This file is indexed.

/usr/include/ITK-4.5/itkFEMSolver.h is in libinsighttoolkit4-dev 4.5.0-3.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
/*=========================================================================
 *
 *  Copyright Insight Software Consortium
 *
 *  Licensed under the Apache License, Version 2.0 (the "License");
 *  you may not use this file except in compliance with the License.
 *  You may obtain a copy of the License at
 *
 *         http://www.apache.org/licenses/LICENSE-2.0.txt
 *
 *  Unless required by applicable law or agreed to in writing, software
 *  distributed under the License is distributed on an "AS IS" BASIS,
 *  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 *  See the License for the specific language governing permissions and
 *  limitations under the License.
 *
 *=========================================================================*/

#ifndef __itkFEMSolver_h
#define __itkFEMSolver_h

#include "itkProcessObject.h"
#include "itkFEMObject.h"

#include "itkFEMLinearSystemWrapper.h"
#include "itkFEMLinearSystemWrapperVNL.h"

#include "itkImage.h"

namespace itk
{
namespace fem
{
/**
 * \class Solver
 * \brief FEM solver used to generate a solution for a FE formulation.
 *
 * This class will solve the FE formulation provided in an FEMObject.
 * The FEMObject contains the Elements, Material properties, Loads,
 * and boundary conditions for the FE problem. The user can define
 * properties of the solver including the time step using the
 * SetTimeStep() method and the numerical solver via the
 * SetLinearSystemWrapper() method. The output of the filter is the deformed
 * FEMObject that also includes all of the loads and boundary conditions.
 *
 *
 * \par Inputs and Usage
 * The standard way to setup a FE problem in ITK is to use the following
 * approach.
 *
 * \code
 *       typedef itk::fem::FEMObject<3>    FEMObjectType;
 *       FEMObjectObjectType::Pointer fem = FEMObjectObjectType::New();
 *       ...
 *       typedef itk::fem::Solver<3>    FEMSolverType;
 *       FEMSolverType::Pointer solver = FEMSolverType::New();
 *
 *       solver->SetInput( fem );
 *       solver->Update( );
 *       FEMSolverType::Pointer defem = solver->GetOutput( );
 *   ...
 * \endcode
 * The solution generated by the SOlver can also be acquired using the
 * GetSolution() method. The FEM can be saved in a file using the
 * spatial objects and the Meta I/O library.
 * \ingroup ITKFEM
 */
template <unsigned int VDimension = 3>
class Solver : public ProcessObject
{
public:
  /** Standard class typedefs. */
  typedef Solver                   Self;
  typedef ProcessObject            Superclass;
  typedef SmartPointer<Self>       Pointer;
  typedef SmartPointer<const Self> ConstPointer;

  /** Method for creation through the object factory. */
  itkNewMacro(Self);

  /** Run-time type information (and related methods). */
  itkTypeMacro(Solver, ProcessObject);

  itkStaticConstMacro(FEMDimension, unsigned int, VDimension);
  itkStaticConstMacro(MaxDimensions, unsigned int, 3);

  /** Smart Pointer type to a DataObject. */
  typedef typename itk::fem::FEMObject<VDimension> FEMObjectType;
  typedef typename FEMObjectType::Pointer          FEMObjectPointer;
  typedef typename FEMObjectType::ConstPointer     FEMObjectConstPointer;
  typedef typename DataObject::Pointer             DataObjectPointer;

  /** Some convenient typedefs. */
  typedef Element::Float           Float;
  typedef Element::VectorType      VectorType;
  typedef Element::Node::ArrayType NodeArray;
  typedef Element::ArrayType       ElementArray;
  typedef Load::ArrayType          LoadArray;
  typedef Material::ArrayType      MaterialArray;

  /**
   * Type used to store interpolation grid
   */
  typedef typename itk::Image<Element::ConstPointer, VDimension> InterpolationGridType;
  typedef typename InterpolationGridType::Pointer                InterpolationGridPointerType;
  typedef typename InterpolationGridType::SizeType               InterpolationGridSizeType;
  typedef typename InterpolationGridType::RegionType             InterpolationGridRegionType;
  typedef typename InterpolationGridType::PointType              InterpolationGridPointType;
  typedef typename InterpolationGridType::SpacingType            InterpolationGridSpacingType;
  typedef typename InterpolationGridType::IndexType              InterpolationGridIndexType;
  typedef typename InterpolationGridType::DirectionType          InterpolationGridDirectionType;

  /*
   * Get/Set the Interpolation Grid Origin
   */
  itkSetMacro(Origin, InterpolationGridPointType);
  itkGetMacro(Origin, InterpolationGridPointType);

  /*
   * Get/Set the Interpolation Grid Spacing
   */
  itkSetMacro(Spacing, InterpolationGridSpacingType);
  itkGetMacro(Spacing, InterpolationGridSpacingType);

  /*
   * Get/Set the Interpolation Grid Region
   */
  itkSetMacro(Region, InterpolationGridRegionType);
  itkGetMacro(Region, InterpolationGridRegionType);

  /*
   * Get/Set the Interpolation Grid Direction
   */
  itkSetMacro(Direction, InterpolationGridDirectionType);
  itkGetMacro(Direction, InterpolationGridDirectionType);

  /** Returns the time step used for dynamic problems. */
  virtual Float GetTimeStep(void) const;

  /**
   * Sets the time step used for dynamic problems.
   *
   * \param dt New time step.
   */
  virtual void SetTimeStep(Float dt);

  /** Returns the Solution for the specified nodal point. */
  Float GetSolution(unsigned int i, unsigned int which = 0);

  /** Set/Get the image input of this process object.
   * Connect one of the operands for pixel-wise addition. */
  using Superclass::SetInput;
  virtual void SetInput( FEMObjectType *fem);

  virtual void SetInput( unsigned int, FEMObjectType * fem);

  FEMObjectType * GetInput(void);

  FEMObjectType * GetInput(unsigned int idx);

  /**
   * Returns the pointer to the element which contains global point pt.
   *
   * \param pt Point in global coordinate system.
   *
   * \note Interpolation grid must be initializes before you can
   *       call this function.
   */
  const Element * GetElementAtPoint(const VectorType & pt) const;

  /** Get the total deformation energy using the chosen solution */
  Float GetDeformationEnergy(unsigned int SolutionIndex = 0);

  /**
   * Sets the LinearSystemWrapper object that will be used when solving
   * the master equation. If this function is not called, a default VNL linear
   * system representation will be used (class LinearSystemWrapperVNL).
   *
   * \param ls Pointer to an object of class which is derived from
   *           LinearSystemWrapper.
   *
   * \note Once the LinearSystemWrapper object is changed, it is used until
   *       the member function SetLinearSystemWrapper is called again. Since
   *       LinearSystemWrapper object was created outside the Solver class, it
   *       should also be destroyed outside. Solver class will not destroy it
   *       when the Solver object is destroyed.
   */
  void SetLinearSystemWrapper(LinearSystemWrapper::Pointer ls);

  /**
   * Gets the LinearSystemWrapper object.
   *
   * \sa SetLinearSystemWrapper
   */
  LinearSystemWrapper::Pointer GetLinearSystemWrapper()
  {
    return m_ls;
  }

  /**
   * Initialize the interpolation grid. The interpolation grid is used to
   * find elements that containg specific points in a mesh. The interpolation
   * grid stores pointers to elements for each point on a grid thereby providing
   * a fast way (lookup table) to perform interpolation of results.
   *
   * \note Interpolation grid must be reinitialized each time a mesh changes.
   *
   * \param size Vector that represents number of points on a grid in each dimension.
   * \param bb1 Lower limit of a bounding box of a grid.
   * \param bb2 Upper limit of a bounding box of a grid.
   *
   * \sa GetInterpolationGrid
   */
  void InitializeInterpolationGrid(const InterpolationGridSizeType & size, const InterpolationGridPointType & bb1,
                                   const InterpolationGridPointType & bb2);

  /** Same as InitializeInterpolationGrid(size, {0,0...}, size); */
  void InitializeInterpolationGrid(const InterpolationGridSizeType & size)
  {
    InterpolationGridPointType bb1;

    bb1.Fill(0.0);

    InterpolationGridPointType bb2;
    for( unsigned int i = 0; i < FEMDimension; i++ )
    {
      bb2[i] = size[i] - 1.0;
    }
    InitializeInterpolationGrid(size, bb1, bb2);
  }

  /**
   * Initialize the interpolation grid, over the domain specified by the user
   */
  void InitializeInterpolationGrid(const InterpolationGridRegionType & region,
                                   const InterpolationGridPointType & origin,
                                   const InterpolationGridSpacingType & spacing,
                                   const InterpolationGridDirectionType & direction);

  /**
   * Returns pointer to interpolation grid, which is an itk::Image of pointers
   * to Element objects. Normally you would use physical coordinates to get
   * specific points (pointers to elements) from the image. You can then
   * use the Elemenet::InterpolateSolution member function on the returned
   * element to obtain the solution at this point.
   *
   * \note Physical coordinates in an image correspond to the global
   *       coordinate system in which the mesh (nodes) are.
   */
  const InterpolationGridType * GetInterpolationGrid(void) const
  {
    return m_InterpolationGrid.GetPointer();
  }


  /** Make a DataObject of the correct type to be used as the specified
   * output. */
  typedef ProcessObject::DataObjectPointerArraySizeType DataObjectPointerArraySizeType;
  using Superclass::MakeOutput;
  virtual DataObjectPointer MakeOutput(DataObjectPointerArraySizeType);

  /** Get the output data of this process object.  The output of this
   * function is not valid until an appropriate Update() method has
   * been called, either explicitly or implicitly.  Both the filter
   * itself and the data object have Update() methods, and both
   * methods update the data.
   *
   * For Filters which have multiple outputs of different types, the
   * GetOutput() method assumes the output is of OutputImageType. For
   * the GetOutput(unsigned int) method, a dynamic_cast is performed
   * incase the filter has outputs of different types or image
   * types. Derived classes should have names get methods for these
   * outputs.
   */
  FEMObjectType * GetOutput(void);

  FEMObjectType * GetOutput(unsigned int idx);

protected:
  Solver();
  virtual ~Solver();
  void PrintSelf(std::ostream& os, Indent indent) const;

  /** Method invoked by the pipeline in order to trigger the computation of
   * the registration. */
  void  GenerateData();


  /**
   * System solver functions. Call all six functions below (in listed order) to solve system.
   */

  /**
   * Assign a global freedom numbers to each DOF in a system.
   * This must be done before any other solve function can be called.
   */
  // void GenerateGFN(void);

  /**
   * Assemble the master stiffness matrix (also apply the MFCs to K)
   */
  void AssembleK();

  /**
   * This function is called before assembling the matrices. You can
   * override it in a derived class to account for special needs.
   *
   * \param N Size of the matrix.
   */
  virtual void InitializeMatrixForAssembly(unsigned int N);

  /**
   * This function is called after the assebly has been completed.
   * In this class it is only used to apply the BCs. You may however
   * use it to perform other stuff in derived solver classes.
   */
  virtual void FinalizeMatrixAfterAssembly(void)
  {
    // Apply the boundary conditions to the K matrix
    this->ApplyBC();
  }

  /**
   * Copy the element stiffness matrix into the correct position in the
   * master stiffess matrix. Since more complex Solver classes may need to
   * assemble many matrices and may also do some funky stuff to them, this
   * function is virtual and can be overriden in a derived solver class.
   */
  virtual void AssembleElementMatrix(Element::Pointer e);

  /**
   * Add the contribution of the landmark-containing elements to the
   * correct position in the master stiffess matrix. Since more
   * complex Solver classes may need to assemble many matrices and may
   * also do some funky stuff to them, this function is virtual and
   * can be overriden in a derived solver class.
   */
  virtual void AssembleLandmarkContribution(Element::ConstPointer e, float);

  /**
   * Apply the boundary conditions to the system.
   *
   * \note This function must be called after AssembleK().
   *
   * \param matrix Index of a matrix, to which the BCs should be
   *               applied (master stiffness matrix). Normally this
   *               is zero, but in derived classes many matrices may
   *               be used and this index must be specified.
   * \param dim This is a parameter that can be passed to the function and is
   *            normally used with isotropic elements to specify the
   *            dimension in which the DOF is fixed.
   */
  void ApplyBC(int dim = 0, unsigned int matrix = 0);

  /**
   * Assemble the master force vector.
   *
   * \param dim This is a parameter that can be passed to the function and is
   *            normally used with isotropic elements to specify the
   *            dimension for which the master force vector should be assembled.
   */
  void AssembleF(int dim = 0);

  /**
   * Decompose matrix using svd, qr, whatever ... if needed
   */
  void DecomposeK(void);

  /**
   * Solve for the displacement vector u. May be overriden in derived classes.
   */
  virtual void RunSolver(void);

  /**
   * Copy solution vector u to the corresponding nodal values, which are
   * stored in node objects). This is standard post processing of the solution.
   */
  void UpdateDisplacements(void);

  /**
   * Fill the interpolation grid based on the current deformed grid
   */
  void FillInterpolationGrid(void);

  /**
   * Performs any initialization needed for LinearSystemWrapper
   * object i.e. sets the maximum number of matrices and vectors.
   */
  virtual void InitializeLinearSystemWrapper(void);

  /**
 * Number of global degrees of freedom in a system
 */
  unsigned int m_NGFN;

  /**
   * Number of multi freedom constraints in a system.
   * This member is set in a AssembleK function.
   */
  unsigned int m_NMFC;

  /** Pointer to LinearSystemWrapper object. */
  LinearSystemWrapper::Pointer m_ls;

  /**
   * LinearSystemWrapperVNL object that is used by default in Solver class.
   */
  LinearSystemWrapperVNL m_lsVNL;

  /**
   * An Image of pointers to Element objects that represents a grid used
   * for interpolation of solution. Each Pixel in an image is a pointer to
   * an Element object in which that pixel is located.
   */
  InterpolationGridPointerType m_InterpolationGrid;

  FEMObjectPointer m_FEMObject;

private:
  Solver(const Self &);         // purposely not implemented
  void operator=(const Self &); // purposely not implemented

  /*
   * Properties of the Interpolation Grid
   */
  InterpolationGridRegionType       m_Region;
  InterpolationGridPointType        m_Origin;
  InterpolationGridSpacingType      m_Spacing;
  InterpolationGridDirectionType    m_Direction;

};
}  // end namespace fem
}  // end namespace itk

#ifndef ITK_MANUAL_INSTANTIATION
#include "itkFEMSolver.hxx"
#endif

#endif // #ifndef __itkFEMSolver_h