This file is indexed.

/usr/include/ITK-4.5/itkFEMSolverCrankNicolson.h is in libinsighttoolkit4-dev 4.5.0-3.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
/*=========================================================================
 *
 *  Copyright Insight Software Consortium
 *
 *  Licensed under the Apache License, Version 2.0 (the "License");
 *  you may not use this file except in compliance with the License.
 *  You may obtain a copy of the License at
 *
 *         http://www.apache.org/licenses/LICENSE-2.0.txt
 *
 *  Unless required by applicable law or agreed to in writing, software
 *  distributed under the License is distributed on an "AS IS" BASIS,
 *  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 *  See the License for the specific language governing permissions and
 *  limitations under the License.
 *
 *=========================================================================*/

#ifndef __itkFEMSolverCrankNicolson_h
#define __itkFEMSolverCrankNicolson_h

#include "itkFEMSolver.h"
#include "itkFEMElementBase.h"
#include "itkFEMMaterialBase.h"
#include "itkFEMLoadBase.h"
#include "itkFEMLinearSystemWrapperVNL.h"

#include "vnl/vnl_sparse_matrix.h"
#include "vnl/vnl_matrix.h"
#include "vnl/vnl_vector.h"
#include "vnl/algo/vnl_svd.h"
#include "vnl/algo/vnl_cholesky.h"
#include <vnl/vnl_sparse_matrix_linear_system.h>
#include <cmath>

namespace itk
{
namespace fem
{
/**
 * \class SolverCrankNicolson
 * \brief FEM Solver for time dependent problems; uses Crank-Nicolson implicit discretization scheme.
 *
 * This is the main class used for solving FEM time-dependent problems.
 * It solves the following problem:
 *
 * \f[
 *      ( M + \alpha*dt* K )*U_t=(M - (1.- \alpha)*dt* K)* U_{t-1} + dt*(\alpha*f_{n+1} + (1-\alpha)*f_n)
 * \f]
 *
 * which is the Crank-Nicolson formulation of the static problem if \f$\alpha=0.5\f$.
 * The static solution is gained if :
 *      \f$\rho = 0.0\f$;   \f$\alpha = 1.0\f$;  \f$dt = 1.0\f$;
 * Practically, it is good to set rho to something small (for the itpack solver).
 * The advantage of choosing \f$\alpha=0.5\f$ is that the solution is then stable for any
 * choice of time step, dt.  This class inherits and uses most of the Solver class
 * functionality.
 *
 * Updated: The calls to to AssembleKandM (or AssembleK) and
 * AssembleFforTimeStep (or AssembleF) are now handled internally
 * by calling Update().
 *
 * FIXME:
 * 1) We should also account for the contribution to the force from essential BCs.
 * Basically there are terms involving  \f$ M * (\dot g_b) \f$  and  \f$ K * g_b \f$
 * where\f$ g_b\f$ is the essential BC vector.
 * \ingroup ITKFEM
 */

template <unsigned int TDimension = 3>
class SolverCrankNicolson : public Solver<TDimension>
{
public:
  typedef SolverCrankNicolson      Self;
  typedef Solver<TDimension>       Superclass;
  typedef SmartPointer<Self>       Pointer;
  typedef SmartPointer<const Self> ConstPointer;

  /** Method for creation through the object factory. */
  itkNewMacro(Self);

  /** Run-time type information (and related methods) */
  itkTypeMacro(SolverCrankNicolson, Solver<TDimension> );

  typedef Element::Float Float;

  /**
   * Get/Set the use of the Mass Matrix for the solution
   */
  itkSetMacro(UseMassMatrix, bool);
  itkGetMacro(UseMassMatrix, bool);

  /**
   * Get the number of iterations run for the solver
   */
  itkGetConstMacro(Iterations, unsigned int);

  /**
   * Reset the number of iterations for the solver. This
   * will prompt the Solver to Assemble the master stiffness
   * and mass matrix again. This is only generated before the
   * first iteration.
   */
  void ResetIterations(void)
  {
    m_Iterations = 0;
  }

  /**
   * Add solution vector u to the corresponding nodal values, which are
   * stored in node objects). This is standard post processing of the solution
   */
  void AddToDisplacements(Float optimum = 1.0);

  void AverageLastTwoDisplacements(Float t = 0.5);

  void ZeroVector(int which = 0);

  void PrintDisplacements();

  void PrintForce();

  /** Get the index for the current solution */
  itkGetMacro(TotalSolutionIndex, unsigned int);

  /** Get the index for the previous solution */
  itkGetMacro(SolutionTMinus1Index, unsigned int);

  /** Set stability step for the solution.  Initialized to 0.5 */
  itkSetMacro(Alpha, Float);
  itkGetMacro(Alpha, Float);

  /** Set density constant.  */
  itkSetMacro(Rho, Float);
  itkGetMacro(Rho, Float);

  /** Returns the time step used for dynamic problems. */
  virtual Float GetTimeStep(void) const
  {
    return m_TimeStep;
  }

  /**
   * Sets the time step used for dynamic problems.
   *
   * \param dt New time step.
   */
  virtual void SetTimeStep(Float dt)
  {
    m_TimeStep = dt;
  }

  /** compute the current state of the right hand side and store the current force
   *  for the next iteration.
   */
  void RecomputeForceVector(unsigned int index);


  /* Finds a triplet that brackets the energy minimum.  From Numerical
    Recipes.*/
  void FindBracketingTriplet(Float *a, Float *b, Float *c);

  /** Finds the optimum value between the last two solutions
   * and sets the current solution to that value.  Uses Evaluate Residual;
   */
  Float GoldenSection(Float tol = 0.01, unsigned int MaxIters = 25);

  /* Brents method from Numerical Recipes. */
  Float BrentsMethod(Float tol = 0.01, unsigned int MaxIters = 25);

  Float EvaluateResidual(Float t = 1.0);

  Float GetDeformationEnergy(Float t = 1.0);

  inline Float GSSign(Float a, Float b)
  {
    return b > 0.0 ? vcl_fabs(a) : -1. * vcl_fabs(a);
  }
  inline Float GSMax(Float a, Float b)
  {
    return a > b ? a : b;
  }

  void SetEnergyToMin(Float xmin);

  inline LinearSystemWrapper * GetLS()
  {
    return this->m_ls;
  }

  Float GetCurrentMaxSolution()
  {
    return m_CurrentMaxSolution;
  }

  /** Compute and print the minimum and maximum of the total solution
   * and the last solution. */
  void PrintMinMaxOfSolution();

protected:

  SolverCrankNicolson();
  ~SolverCrankNicolson() { }

  /** Method invoked by the pipeline in order to trigger the computation of
   * the registration. */
  void  GenerateData();

  /**
   * Solve for the displacement vector u at a given time.  Update the total solution as well.
   */
  virtual void RunSolver(void);

  /**
   * helper initialization function before assembly but after generate GFN.
   */
  void InitializeForSolution();

  /**
   * Assemble the master stiffness and mass matrix.  We actually assemble
   * the right hand side and left hand side of the implicit scheme equation.
   */
  void AssembleKandM();

  /**
   * Assemble the master force vector at a given time.
   *
   * \param dim This is a parameter that can be passed to the function and is
                normally used with isotropic elements to specify the
                dimension for which the master force vector should be assembled.
   */
  void AssembleFforTimeStep(int dim = 0);

  Float m_TimeStep;
  Float m_Rho;
  Float m_Alpha;
  Float m_CurrentMaxSolution;

  bool         m_UseMassMatrix;
  unsigned int m_Iterations;

  unsigned int m_ForceTIndex;
  unsigned int m_ForceTotalIndex;
  unsigned int m_ForceTMinus1Index;
  unsigned int m_SolutionTIndex;
  unsigned int m_SolutionTMinus1Index;
  unsigned int m_SolutionVectorTMinus1Index;
  unsigned int m_TotalSolutionIndex;
  unsigned int m_DifferenceMatrixIndex;
  unsigned int m_SumMatrixIndex;
  unsigned int m_DiffMatrixBySolutionTMinus1Index;

private:
  SolverCrankNicolson(const Self &); // purposely not implemented
  void operator=(const Self &);      // purposely not implemented

};
}
}  // end namespace itk::fem

#ifndef ITK_MANUAL_INSTANTIATION
#include "itkFEMSolverCrankNicolson.hxx"
#endif

#endif // #ifndef __itkFEMSolverCrankNicolson_h