/usr/include/ITK-4.5/itkFlatStructuringElement.hxx is in libinsighttoolkit4-dev 4.5.0-3.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 | /*=========================================================================
*
* Copyright Insight Software Consortium
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0.txt
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
*=========================================================================*/
#ifndef __itkFlatStructuringElement_hxx
#define __itkFlatStructuringElement_hxx
#include "vnl/vnl_math.h"
#include "itkFlatStructuringElement.h"
#include <cmath>
#include <vector>
#ifndef M_PI
#define M_PI vnl_math::pi
#endif
#include "itkImage.h"
#include "itkImageRegionIterator.h"
#include "itkFloodFilledSpatialFunctionConditionalIterator.h"
#include "itkEllipsoidInteriorExteriorSpatialFunction.h"
namespace itk
{
template< typename TImage, typename TKernel >
class VanHerkGilWermanDilateImageFilter;
}
#include "itkVanHerkGilWermanDilateImageFilter.h"
namespace itk
{
template< unsigned int NDimension >
FlatStructuringElement< NDimension >
FlatStructuringElement< NDimension >
::Polygon(RadiusType radius, unsigned lines)
{
Self res = Self();
GeneratePolygon(res, radius, lines);
return res;
}
template< unsigned int VDimension >
template< typename TStructuringElement, typename TRadius >
void
FlatStructuringElement< VDimension >
::GeneratePolygon(TStructuringElement & , TRadius , unsigned )
{
itkGenericExceptionMacro("Only dimension 2 and 3 are suported.");
}
template< unsigned int VDimension >
void
FlatStructuringElement< VDimension >
::GeneratePolygon(itk::FlatStructuringElement< 2 > & res, itk::Size<2> radius, unsigned lines)
{
// radial decomposition method from "Radial Decomposition of Discs
// and Spheres" - CVGIP: Graphical Models and Image Processing
//std::cout << "2 dimensions" << std::endl;
res.SetRadius(radius);
res.SetDecomposable(true);
unsigned int rr = 0;
for ( unsigned i = 0; i < 2; i++ )
{
if ( radius[i] > rr ) { rr = radius[i]; }
}
if ( lines == 0 )
{
// select some default line values
if ( rr <= 3 ) { lines = 2; }
else if ( rr <= 8 )
{
lines = 4;
}
else { lines = 6; }
}
// start with a circle - figure out the length of the structuring
// element we need -- This method results in a polygon with 2*lines
// sides, each side with length k, where k is the structuring
// element length. Therefore the value of k we need to produce the
// radius we want is: (M_PI * rr * 2)/(2*lines)
float k1 = ( M_PI * (float)radius[0] ) / ( (float)lines );
float k2 = ( M_PI * (float)radius[1] ) / ( (float)lines );
//std::cout << "k= " << k << std::endl;
float theta, step;
step = M_PI / lines;
theta = 0;
// just to ensure that we get the last one
while ( theta <= M_PI / 2.0 + 0.0001 )
{
LType2 O;
O[0] = k1 * vcl_cos(theta);
O[1] = k2 * vcl_sin(theta);
if ( !res.CheckParallel(O) )
{
//std::cout << O << std::endl;
res.AddLine(O);
}
O[0] = k1 * vcl_cos(-theta);
O[1] = k2 * vcl_sin(-theta);
if ( !res.CheckParallel(O) )
{
//std::cout << O << std::endl;
res.AddLine(O);
}
theta += step;
//std::cout << "theta1 = " << theta << " " << M_PI/2.0 << std::endl;
}
res.ComputeBufferFromLines();
}
// O[0] = k1 * vcl_cos(phi) * vcl_cos(theta);
// O[1] = k2 * vcl_cos(phi) * vcl_sin(theta);
// O[2] = k3 * vcl_sin(theta);
template< unsigned int VDimension >
void
FlatStructuringElement< VDimension >
::GeneratePolygon(itk::FlatStructuringElement< 3 > & res, itk::Size<3> radius, unsigned lines)
{
res.SetRadius(radius);
res.SetDecomposable(true);
// std::cout << "3 dimensions" << std::endl;
unsigned int rr = 0;
int iterations = 1;
int faces = lines * 2;
for ( unsigned i = 0; i < 3; i++ )
{
if ( radius[i] > rr ) { rr = radius[i]; }
}
switch ( faces )
{
case 12:
{
// dodecahedron
float phi = ( 1.0 + vcl_sqrt(5.0) ) / 2.0;
float b = 1.0 / phi;
float c = 2.0 - phi;
unsigned facets = 12;
typedef std::vector< FacetType3 > FacetArrayType;
FacetArrayType FacetArray;
FacetArray.resize(facets);
// set up vectors normal to the faces - only put in 3 points for
// each face:
// face 1
LType3 PP(0.0);
FacetType3 Fc;
b /= 2.0;
c /= 2.0;
PP[0] = c; PP[1] = 0; PP[2] = 0.5;
Fc.P1 = PP;
PP[0] = -c; PP[1] = 0; PP[2] = 0.5;
Fc.P2 = PP;
PP[0] = -b; PP[1] = b; PP[2] = b;
Fc.P3 = PP;
FacetArray[0] = Fc;
PP[0] = -c; PP[1] = 0; PP[2] = 0.5;
Fc.P1 = PP;
PP[0] = c; PP[1] = 0; PP[2] = 0.5;
Fc.P2 = PP;
PP[0] = b; PP[1] = -b; PP[2] = b;
Fc.P3 = PP;
FacetArray[1] = Fc;
PP[0] = c; PP[1] = 0; PP[2] = -0.5;
Fc.P1 = PP;
PP[0] = -c; PP[1] = 0; PP[2] = -0.5;
Fc.P2 = PP;
PP[0] = -b; PP[1] = -b; PP[2] = -b;
Fc.P3 = PP;
FacetArray[2] = Fc;
PP[0] = -c; PP[1] = 0; PP[2] = -0.5;
Fc.P1 = PP;
PP[0] = c; PP[1] = 0; PP[2] = -0.5;
Fc.P2 = PP;
PP[0] = b; PP[1] = b; PP[2] = -b;
Fc.P3 = PP;
FacetArray[3] = Fc;
PP[0] = 0; PP[1] = 0.5; PP[2] = -c;
Fc.P1 = PP;
PP[0] = 0; PP[1] = 0.5; PP[2] = c;
Fc.P2 = PP;
PP[0] = b; PP[1] = b; PP[2] = b;
Fc.P3 = PP;
FacetArray[4] = Fc;
PP[0] = 0; PP[1] = 0.5; PP[2] = c;
Fc.P1 = PP;
PP[0] = 0; PP[1] = 0.5; PP[2] = -c;
Fc.P2 = PP;
PP[0] = -b; PP[1] = b; PP[2] = -b;
Fc.P3 = PP;
FacetArray[5] = Fc;
PP[0] = 0; PP[1] = -0.5; PP[2] = -c;
Fc.P1 = PP;
PP[0] = 0; PP[1] = -0.5; PP[2] = c;
Fc.P2 = PP;
PP[0] = -b; PP[1] = -b; PP[2] = b;
Fc.P3 = PP;
FacetArray[6] = Fc;
PP[0] = 0; PP[1] = -0.5; PP[2] = c;
Fc.P1 = PP;
PP[0] = 0; PP[1] = -0.5; PP[2] = -c;
Fc.P2 = PP;
PP[0] = b; PP[1] = -b; PP[2] = -b;
Fc.P3 = PP;
FacetArray[7] = Fc;
PP[0] = 0.5; PP[1] = c; PP[2] = 0;
Fc.P1 = PP;
PP[0] = 0.5; PP[1] = -c; PP[2] = 0;
Fc.P2 = PP;
PP[0] = b; PP[1] = -b; PP[2] = b;
Fc.P3 = PP;
FacetArray[8] = Fc;
PP[0] = 0.5; PP[1] = -c; PP[2] = 0;
Fc.P1 = PP;
PP[0] = 0.5; PP[1] = c; PP[2] = 0;
Fc.P2 = PP;
PP[0] = b; PP[1] = b; PP[2] = -b;
Fc.P3 = PP;
FacetArray[9] = Fc;
PP[0] = -0.5; PP[1] = c; PP[2] = 0;
Fc.P1 = PP;
PP[0] = -0.5; PP[1] = -c; PP[2] = 0;
Fc.P2 = PP;
PP[0] = -b; PP[1] = -b; PP[2] = -b;
Fc.P3 = PP;
FacetArray[10] = Fc;
PP[0] = -0.5; PP[1] = -c; PP[2] = 0;
Fc.P1 = PP;
PP[0] = -0.5; PP[1] = c; PP[2] = 0;
Fc.P2 = PP;
PP[0] = -b; PP[1] = b; PP[2] = b;
Fc.P3 = PP;
FacetArray[11] = Fc;
for ( unsigned j = 0; j < facets; j++ )
{
// Find a line perpendicular to each face
LType3 L, A, B;
A = FacetArray[j].P2 - FacetArray[j].P1;
B = FacetArray[j].P3 - FacetArray[j].P1;
L[0] = A[1] * B[2] - B[1] * A[2];
L[1] = B[0] * A[2] - A[0] * B[2];
L[2] = A[0] * B[1] - B[0] * A[1];
L.Normalize();
// Scale to required length
L *= rr;
if ( !res.CheckParallel(L) )
{
res.AddLine(L);
}
}
}
break;
case 14:
{
// cube with the corners cut off
LType3 A;
// The axes
A[0] = 1; A[1] = 0; A[2] = 0;
A *= rr;
res.AddLine(A);
A[0] = 0; A[1] = 1; A[2] = 0;
A *= rr;
res.AddLine(A);
A[0] = 0; A[1] = 0; A[2] = 1;
A *= rr;
res.AddLine(A);
// Diagonals
A[0] = 1; A[1] = 1; A[2] = 1;
A.Normalize();
A *= rr;
res.AddLine(A);
A[0] = -1; A[1] = 1; A[2] = 1;
A.Normalize();
A *= rr;
res.AddLine(A);
A[0] = 1; A[1] = -1; A[2] = 1;
A.Normalize();
A *= rr;
res.AddLine(A);
A[0] = -1; A[1] = -1; A[2] = 1;
A.Normalize();
A *= rr;
res.AddLine(A);
}
break;
case 20:
{
// Icosahedron
float phi = ( 1.0 + vcl_sqrt(5.0) ) / 2.0;
float a = 0.5;
float b = 1.0 / ( 2.0 * phi );
unsigned facets = 20;
typedef std::vector< FacetType3 > FacetArrayType;
FacetArrayType FacetArray;
FacetArray.resize(facets);
// set up vectors normal to the faces - only put in 3 points for
// each face:
// face 1
LType3 PP(0.0);
FacetType3 Fc;
PP[0] = 0; PP[1] = b; PP[2] = -a;
Fc.P1 = PP;
PP[0] = b; PP[1] = a; PP[2] = 0;
Fc.P2 = PP;
PP[0] = -b; PP[1] = a; PP[2] = 0;
Fc.P3 = PP;
FacetArray[0] = Fc;
PP[0] = 0; PP[1] = b; PP[2] = a;
Fc.P1 = PP;
PP[0] = -b; PP[1] = a; PP[2] = 0;
Fc.P2 = PP;
PP[0] = b; PP[1] = a; PP[2] = 0;
Fc.P3 = PP;
FacetArray[1] = Fc;
PP[0] = 0; PP[1] = b; PP[2] = a;
Fc.P1 = PP;
PP[0] = 0; PP[1] = -b; PP[2] = a;
Fc.P2 = PP;
PP[0] = -a; PP[1] = 0; PP[2] = b;
Fc.P3 = PP;
FacetArray[2] = Fc;
PP[0] = 0; PP[1] = b; PP[2] = a;
Fc.P1 = PP;
PP[0] = a; PP[1] = 0; PP[2] = b;
Fc.P2 = PP;
PP[0] = 0; PP[1] = -b; PP[2] = a;
Fc.P3 = PP;
FacetArray[3] = Fc;
PP[0] = 0; PP[1] = b; PP[2] = -a;
Fc.P1 = PP;
PP[0] = 0; PP[1] = -b; PP[2] = -a;
Fc.P2 = PP;
PP[0] = a; PP[1] = 0; PP[2] = -b;
Fc.P3 = PP;
FacetArray[4] = Fc;
PP[0] = 0; PP[1] = b; PP[2] = -a;
Fc.P1 = PP;
PP[0] = -a; PP[1] = 0; PP[2] = -b;
Fc.P2 = PP;
PP[0] = 0; PP[1] = -b; PP[2] = -a;
Fc.P3 = PP;
FacetArray[5] = Fc;
PP[0] = 0; PP[1] = -b; PP[2] = a;
Fc.P1 = PP;
PP[0] = b; PP[1] = -a; PP[2] = 0;
Fc.P2 = PP;
PP[0] = -b; PP[1] = -a; PP[2] = 0;
Fc.P3 = PP;
FacetArray[6] = Fc;
PP[0] = 0; PP[1] = -b; PP[2] = -a;
Fc.P1 = PP;
PP[0] = -b; PP[1] = -a; PP[2] = 0;
Fc.P2 = PP;
PP[0] = b; PP[1] = -a; PP[2] = 0;
Fc.P3 = PP;
FacetArray[7] = Fc;
PP[0] = -b; PP[1] = a; PP[2] = 0;
Fc.P1 = PP;
PP[0] = -a; PP[1] = 0; PP[2] = b;
Fc.P2 = PP;
PP[0] = -a; PP[1] = 0; PP[2] = -b;
Fc.P3 = PP;
FacetArray[8] = Fc;
PP[0] = -b; PP[1] = -a; PP[2] = 0;
Fc.P1 = PP;
PP[0] = -a; PP[1] = 0; PP[2] = -b;
Fc.P2 = PP;
PP[0] = -a; PP[1] = 0; PP[2] = b;
Fc.P3 = PP;
FacetArray[9] = Fc;
PP[0] = b; PP[1] = a; PP[2] = 0;
Fc.P1 = PP;
PP[0] = a; PP[1] = 0; PP[2] = -b;
Fc.P2 = PP;
PP[0] = a; PP[1] = 0; PP[2] = b;
Fc.P3 = PP;
FacetArray[10] = Fc;
PP[0] = b; PP[1] = -a; PP[2] = 0;
Fc.P1 = PP;
PP[0] = a; PP[1] = 0; PP[2] = b;
Fc.P2 = PP;
PP[0] = a; PP[1] = 0; PP[2] = -b;
Fc.P3 = PP;
FacetArray[11] = Fc;
PP[0] = 0; PP[1] = b; PP[2] = a;
Fc.P1 = PP;
PP[0] = -a; PP[1] = 0; PP[2] = b;
Fc.P2 = PP;
PP[0] = -b; PP[1] = a; PP[2] = 0;
Fc.P3 = PP;
FacetArray[12] = Fc;
PP[0] = 0; PP[1] = b; PP[2] = a;
Fc.P1 = PP;
PP[0] = b; PP[1] = a; PP[2] = 0;
Fc.P2 = PP;
PP[0] = a; PP[1] = 0; PP[2] = b;
Fc.P3 = PP;
FacetArray[13] = Fc;
PP[0] = 0; PP[1] = b; PP[2] = -a;
Fc.P1 = PP;
PP[0] = -b; PP[1] = a; PP[2] = 0;
Fc.P2 = PP;
PP[0] = -a; PP[1] = 0; PP[2] = -b;
Fc.P3 = PP;
FacetArray[14] = Fc;
PP[0] = 0; PP[1] = b; PP[2] = -a;
Fc.P1 = PP;
PP[0] = a; PP[1] = 0; PP[2] = -b;
Fc.P2 = PP;
PP[0] = b; PP[1] = a; PP[2] = 0;
Fc.P3 = PP;
FacetArray[15] = Fc;
PP[0] = 0; PP[1] = -b; PP[2] = -a;
Fc.P1 = PP;
PP[0] = -a; PP[1] = 0; PP[2] = -b;
Fc.P2 = PP;
PP[0] = -b; PP[1] = -a; PP[2] = 0;
Fc.P3 = PP;
FacetArray[16] = Fc;
PP[0] = 0; PP[1] = -b; PP[2] = -a;
Fc.P1 = PP;
PP[0] = b; PP[1] = -a; PP[2] = 0;
Fc.P2 = PP;
PP[0] = a; PP[1] = 0; PP[2] = -b;
Fc.P3 = PP;
FacetArray[17] = Fc;
PP[0] = 0; PP[1] = -b; PP[2] = a;
Fc.P1 = PP;
PP[0] = -b; PP[1] = -a; PP[2] = 0;
Fc.P2 = PP;
PP[0] = -a; PP[1] = 0; PP[2] = b;
Fc.P3 = PP;
FacetArray[18] = Fc;
PP[0] = 0; PP[1] = -b; PP[2] = a;
Fc.P1 = PP;
PP[0] = a; PP[1] = 0; PP[2] = b;
Fc.P2 = PP;
PP[0] = b; PP[1] = -a; PP[2] = 0;
Fc.P3 = PP;
FacetArray[19] = Fc;
for ( unsigned j = 0; j < facets; j++ )
{
// Find a line perpendicular to each face
LType3 L, A, B;
A = FacetArray[j].P2 - FacetArray[j].P1;
B = FacetArray[j].P3 - FacetArray[j].P1;
L[0] = A[1] * B[2] - B[1] * A[2];
L[1] = B[0] * A[2] - A[0] * B[2];
L[2] = A[0] * B[1] - B[0] * A[1];
L.Normalize();
// Scale to required length
L *= rr;
if ( !res.CheckParallel(L) )
{
res.AddLine(L);
}
}
}
break;
case 32:
{
iterations = 1;
// 2 iterations leads to 128 faces, which is too many
// subdivision of octahedron
// create triangular facet approximation to a sphere - begin with
// unit sphere
// total number of facets is 8 * (4^iterations)
unsigned int facets = 8 * (int)vcl_pow( (double)4, iterations );
float sqrt2 = vcl_sqrt(2.0);
// std::cout << facets << " facets" << std::endl;
typedef std::vector< FacetType3 > FacetArrayType;
FacetArrayType FacetArray;
FacetArray.resize(facets);
// original corners of octahedron
LType3 P0(0.0), P1(0.0), P2(0.0), P3(0.0), P4(0.0), P5(0.0);
P0[0] = 0; P0[1] = 0; P0[2] = 1;
P1[0] = 0; P1[1] = 0; P1[2] = -1;
P2[0] = -1.0 / sqrt2; P2[1] = -1 / sqrt2; P2[2] = 0;
P3[0] = 1 / sqrt2; P3[1] = -1 / sqrt2; P3[2] = 0;
P4[0] = 1 / sqrt2; P4[1] = 1 / sqrt2; P4[2] = 0;
P5[0] = -1 / sqrt2; P5[1] = 1 / sqrt2; P5[2] = 0;
FacetType3 F0, F1, F2, F3, F4, F5, F6, F7;
F0.P1 = P0; F0.P2 = P3; F0.P3 = P4;
F1.P1 = P0; F1.P2 = P4; F1.P3 = P5;
F2.P1 = P0; F2.P2 = P5; F2.P3 = P2;
F3.P1 = P0; F3.P2 = P2; F3.P3 = P3;
F4.P1 = P1; F4.P2 = P4; F4.P3 = P3;
F5.P1 = P1; F5.P2 = P5; F5.P3 = P4;
F6.P1 = P1; F6.P2 = P2; F6.P3 = P5;
F7.P1 = P1; F7.P2 = P3; F7.P3 = P2;
FacetArray[0] = F0;
FacetArray[1] = F1;
FacetArray[2] = F2;
FacetArray[3] = F3;
FacetArray[4] = F4;
FacetArray[5] = F5;
FacetArray[6] = F6;
FacetArray[7] = F7;
int pos = 8;
// now subdivide the octahedron
for ( unsigned it = 0; it < (unsigned)iterations; it++ )
{
// Bisect edges and move to sphere
unsigned ntold = pos;
for ( unsigned i = 0; i < ntold; i++ )
{
LType3 Pa, Pb, Pc;
for ( unsigned d = 0; d < 3; d++ )
{
Pa[d] = ( FacetArray[i].P1[d] + FacetArray[i].P2[d] ) / 2;
Pb[d] = ( FacetArray[i].P2[d] + FacetArray[i].P3[d] ) / 2;
Pc[d] = ( FacetArray[i].P3[d] + FacetArray[i].P1[d] ) / 2;
}
Pa.Normalize();
Pb.Normalize();
Pc.Normalize();
FacetArray[pos].P1 = FacetArray[i].P1;
FacetArray[pos].P2 = Pa;
FacetArray[pos].P3 = Pc;
pos++;
FacetArray[pos].P1 = Pa;
FacetArray[pos].P2 = FacetArray[i].P2;
FacetArray[pos].P3 = Pb;
pos++;
FacetArray[pos].P1 = Pb;
FacetArray[pos].P2 = FacetArray[i].P3;
FacetArray[pos].P3 = Pc;
pos++;
FacetArray[i].P1 = Pa;
FacetArray[i].P2 = Pb;
FacetArray[i].P3 = Pc;
}
}
for ( unsigned j = 0; j < facets; j++ )
{
// Find a line perpendicular to each face
LType3 L, A, B;
A = FacetArray[j].P2 - FacetArray[j].P1;
B = FacetArray[j].P3 - FacetArray[j].P1;
L[0] = A[1] * B[2] - B[1] * A[2];
L[1] = B[0] * A[2] - A[0] * B[2];
L[2] = A[0] * B[1] - B[0] * A[1];
L.Normalize();
// Scale to required length
L *= rr;
if ( !res.CheckParallel(L) )
{
res.AddLine(L);
}
}
}
break;
default:
itkGenericExceptionMacro("Unsupported number of lines: " << lines << ". Supported values are 6, 7, 10 and 16.");
}
res.ComputeBufferFromLines();
}
template< unsigned int VDimension >
FlatStructuringElement< VDimension > FlatStructuringElement< VDimension >
::Box(RadiusType radius)
{
// this should work for any number of dimensions
Self res = Self();
res.SetDecomposable(true);
res.SetRadius(radius);
for ( unsigned i = 0; i < VDimension; i++ )
{
if ( radius[i] != 0 )
{
LType L;
L.Fill(0);
L[i] = radius[i] * 2 + 1;
res.AddLine(L);
}
}
// this doesn't work if one of the dimensions is zero. Suspect an
//"inconsistency" in the way
// res.ComputeBufferFromLines();
Iterator kernel_it;
for ( kernel_it = res.Begin(); kernel_it != res.End(); ++kernel_it )
{
*kernel_it = true;
}
return res;
}
template< unsigned int VDimension >
FlatStructuringElement< VDimension > FlatStructuringElement< VDimension >
::Cross(RadiusType radius)
{
// this should work for any number of dimensions
Self res = Self();
res.m_Decomposable = false;
res.SetRadius(radius);
Iterator kernel_it;
for ( kernel_it = res.Begin(); kernel_it != res.End(); ++kernel_it )
{
*kernel_it = false;
}
for ( int d = 0; d < (int)VDimension; d++ )
{
OffsetType o;
o.Fill(0);
for ( int i = -(int)radius[d]; i <= (int)radius[d]; i++ )
{
o[d] = i;
res[o] = true;
}
}
return res;
}
template< unsigned int VDimension >
FlatStructuringElement< VDimension > FlatStructuringElement< VDimension >
::Ball(RadiusType radius, bool radiusIsParametric)
{
Self res = Self();
res.SetRadius(radius);
res.m_Decomposable = false;
res.SetRadiusIsParametric(radiusIsParametric);
unsigned int i;
// Image typedef
typedef Image< bool, VDimension > ImageType;
// Create an image to hold the ellipsoid
//
typename ImageType::Pointer sourceImage = ImageType::New();
typename ImageType::RegionType region;
RadiusType size = radius;
for ( i = 0; i < (int)VDimension; i++ )
{
size[i] = 2 * size[i] + 1;
}
region.SetSize(size);
sourceImage->SetRegions(region);
sourceImage->Allocate();
// sourceImage->Print( std::cout );
// Set the background to be zero
//
ImageRegionIterator< ImageType > it(sourceImage, region);
for ( it.GoToBegin(); !it.IsAtEnd(); ++it )
{
it.Set(false);
}
// Create the ellipsoid
//
// Ellipsoid spatial function typedef
typedef EllipsoidInteriorExteriorSpatialFunction< VDimension > EllipsoidType;
// Create an ellipsoid spatial function for the source image
typename EllipsoidType::Pointer spatialFunction = EllipsoidType::New();
// Define and set the axes lengths for the ellipsoid
typename EllipsoidType::InputType axes;
for ( i = 0; i < VDimension; i++ )
{
if( res.GetRadiusIsParametric() )
{
axes[i] = 2 * res.GetRadius(i);
}
else
{
axes[i] = res.GetSize(i);
}
}
spatialFunction->SetAxes(axes);
// Define and set the center of the ellipsoid in physical space
typename EllipsoidType::InputType center;
for ( i = 0; i < VDimension; i++ )
{
// put the center of ellipse in the middle of the center pixel
center[i] = res.GetRadius(i) + 0.5;
}
spatialFunction->SetCenter(center);
// Define the orientations of the ellipsoid axes, for now, we'll use
// the identify matrix
typename EllipsoidType::OrientationType orientations;
orientations.fill(0.0);
orientations.fill_diagonal(1.0);
spatialFunction->SetOrientations(orientations);
typename ImageType::IndexType seed;
for ( i = 0; i < VDimension; i++ )
{
seed[i] = res.GetRadius(i);
}
FloodFilledSpatialFunctionConditionalIterator< ImageType, EllipsoidType >
sfi = FloodFilledSpatialFunctionConditionalIterator< ImageType,
EllipsoidType >(sourceImage, spatialFunction, seed);
sfi.SetCenterInclusionStrategy();
// Iterate through the entire image and set interior pixels to 1
for (; !sfi.IsAtEnd(); ++sfi )
{
sfi.Set(true);
}
// Copy the ellipsoid into the kernel
//
Iterator kernel_it;
for ( it.GoToBegin(), kernel_it = res.Begin(); !it.IsAtEnd(); ++it, ++kernel_it )
{
*kernel_it = it.Get();
}
// Clean up
// ...temporary image should be cleaned up by SmartPointers automatically
return res;
}
template< unsigned int NDimension >
FlatStructuringElement< NDimension >
FlatStructuringElement< NDimension >
::Annulus(RadiusType radius,
unsigned int thickness,
bool includeCenter,
bool radiusIsParametric)
{
Self result = Self();
result.SetRadius(radius);
result.m_Decomposable = false;
result.SetRadiusIsParametric( radiusIsParametric );
// Image typedef
typedef Image< bool, NDimension > ImageType;
// Create an image to hold the ellipsoid
//
typename ImageType::Pointer kernelImage = ImageType::New();
typename ImageType::RegionType region;
RadiusType size = radius;
for ( unsigned int i = 0; i < NDimension; i++ )
{
size[i] = 2 * size[i] + 1;
}
region.SetSize(size);
kernelImage->SetRegions(region);
kernelImage->Allocate();
// Set the background to be zero
//
ImageRegionIterator< ImageType > it(kernelImage, region);
for ( it.GoToBegin(); !it.IsAtEnd(); ++it )
{
it.Set(false);
}
// Create two ellipsoids
//
// Ellipsoid spatial function typedef
typedef EllipsoidInteriorExteriorSpatialFunction< NDimension > EllipsoidType;
// Create an ellipsoid spatial function for the source image
typename EllipsoidType::Pointer ellipsoidOuter = EllipsoidType::New();
typename EllipsoidType::Pointer ellipsoidInner = EllipsoidType::New();
// Define and set the axes lengths for the ellipsoid
typename EllipsoidType::InputType axesOuter;
typename EllipsoidType::InputType axesInner;
for ( unsigned int i = 0; i < NDimension; i++ )
{
if( result.GetRadiusIsParametric() )
{
axesOuter[i] = 2 * result.GetRadius(i);
axesInner[i] = std::max(2 * (OffsetValueType)radius[i] - 2 * (OffsetValueType)thickness, (OffsetValueType)1);
}
else
{
axesOuter[i] = result.GetSize(i);
axesInner[i] = std::max(2 * (OffsetValueType)radius[i] + 1 - 2 * (OffsetValueType)thickness, (OffsetValueType)1);
}
}
ellipsoidOuter->SetAxes(axesOuter);
ellipsoidInner->SetAxes(axesInner);
// Define and set the center of the ellipsoid in physical space
typename EllipsoidType::InputType center;
for ( unsigned int i = 0; i < NDimension; i++ )
{
// put the center of ellipse in the middle of the center pixel
center[i] = result.GetRadius(i) + 0.5;
}
ellipsoidOuter->SetCenter(center);
ellipsoidInner->SetCenter(center);
// Define the orientations of the ellipsoid axes, for now, we'll use
// the identity matrix
typename EllipsoidType::OrientationType orientations;
orientations.fill(0.0);
orientations.fill_diagonal(1.0);
ellipsoidOuter->SetOrientations(orientations);
ellipsoidInner->SetOrientations(orientations);
// Create the starting seed
typename ImageType::IndexType seed;
for ( unsigned int i = 0; i < NDimension; i++ )
{
seed[i] = result.GetRadius(i);
}
// Define the iterators for each ellipsoid
typedef FloodFilledSpatialFunctionConditionalIterator< ImageType, EllipsoidType >
FloodIteratorType;
FloodIteratorType itEllipsoidOuter =
FloodIteratorType(kernelImage, ellipsoidOuter, seed);
FloodIteratorType itEllipsoidInner =
FloodIteratorType(kernelImage, ellipsoidInner, seed);
itEllipsoidOuter.SetCenterInclusionStrategy();
itEllipsoidInner.SetCenterInclusionStrategy();
// Iterate through the image and set all outer pixels to 'ON'
for (; !itEllipsoidOuter.IsAtEnd(); ++itEllipsoidOuter )
{
itEllipsoidOuter.Set(true);
}
// Iterate through the image and set all inner pixels to 'OFF'
for (; !itEllipsoidInner.IsAtEnd(); ++itEllipsoidInner )
{
itEllipsoidInner.Set(false);
}
// Set center pixel if included
kernelImage->SetPixel(seed, includeCenter);
// Copy the annulus into the kernel
//
Iterator kernel_it;
for ( it.GoToBegin(), kernel_it = result.Begin(); !it.IsAtEnd(); ++it, ++kernel_it )
{
*kernel_it = it.Get();
}
// Clean up
// ...temporary image should be cleaned up by SmartPointers automatically
return result;
}
template< unsigned int VDimension >
bool
FlatStructuringElement< VDimension >::CheckParallel(LType NewVec) const
{
LType NN = NewVec;
NN.Normalize();
for ( unsigned i = 0; i < m_Lines.size(); i++ )
{
LType LL = m_Lines[i];
LL.Normalize();
float L = NN * LL;
if ( ( 1.0 - vcl_fabs(L) ) < 0.000001 ) { return ( true ); }
}
return ( false );
}
template< unsigned int VDimension >
void FlatStructuringElement< VDimension >
::PrintSelf(std::ostream & os, Indent indent) const
{
Superclass::PrintSelf(os, indent);
if ( m_Decomposable )
{
os << indent << "SE decomposition:" << std::endl;
for ( unsigned i = 0; i < m_Lines.size(); i++ )
{
os << indent << m_Lines[i] << std::endl;
}
}
}
template< unsigned int VDimension >
void
FlatStructuringElement< VDimension >::ComputeBufferFromLines()
{
if ( !m_Decomposable )
{
itkGenericExceptionMacro("Element must be decomposable.");
}
// create an image with a single pixel in the center which will be dilated
// by the structuring lines (with AnchorDilateImageFilter) so the content
// of the buffer will reflect the shape of the structuring element
// Image typedef
typedef Image< bool, VDimension > ImageType;
// Create an image to hold the ellipsoid
//
typename ImageType::Pointer sourceImage = ImageType::New();
typename ImageType::RegionType region;
RadiusType size = this->GetRadius();
for ( int i = 0; i < (int)VDimension; i++ )
{
size[i] = 2 * size[i] + 1;
}
region.SetSize(size);
sourceImage->SetRegions(region);
sourceImage->Allocate();
// sourceImage->Print(std::cout);
// Set the background to be zero
//
ImageRegionIterator< ImageType > it(sourceImage, region);
for ( it.GoToBegin(); !it.IsAtEnd(); ++it )
{
it.Set(false);
}
// set the center pixel to 1
typename ImageType::IndexType center;
for ( int i = 0; i < (int)VDimension; i++ )
{
center[i] = this->GetRadius()[i];
}
sourceImage->SetPixel(center, true);
// initialize the kernel with everything to false, to avoid warnings in
// valgrind in the SetKernel() method
Iterator kernel_it;
for ( kernel_it = this->Begin(); kernel_it != this->End(); ++kernel_it )
{
*kernel_it = false;
}
// dilate the pixel
typedef VanHerkGilWermanDilateImageFilter< ImageType, Self > DilateType;
typename DilateType::Pointer dilate = DilateType::New();
dilate->SetInput(sourceImage);
dilate->SetKernel(*this);
dilate->Update();
// copy back the image to the kernel
ImageRegionIterator< ImageType > oit(dilate->GetOutput(), region);
for ( oit.GoToBegin(), kernel_it = this->Begin(); !oit.IsAtEnd(); ++oit, ++kernel_it )
{
*kernel_it = oit.Get();
}
}
}
#endif
|