This file is indexed.

/usr/include/ITK-4.5/itkGPUScalarAnisotropicDiffusionFunction.hxx is in libinsighttoolkit4-dev 4.5.0-3.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
/*=========================================================================
 *
 *  Copyright Insight Software Consortium
 *
 *  Licensed under the Apache License, Version 2.0 (the "License");
 *  you may not use this file except in compliance with the License.
 *  You may obtain a copy of the License at
 *
 *         http://www.apache.org/licenses/LICENSE-2.0.txt
 *
 *  Unless required by applicable law or agreed to in writing, software
 *  distributed under the License is distributed on an "AS IS" BASIS,
 *  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 *  See the License for the specific language governing permissions and
 *  limitations under the License.
 *
 *=========================================================================*/
#ifndef __itkGPUScalarAnisotropicDiffusionFunction_hxx
#define __itkGPUScalarAnisotropicDiffusionFunction_hxx

#include "itkConstNeighborhoodIterator.h"
#include "itkNeighborhoodInnerProduct.h"
#include "itkNeighborhoodAlgorithm.h"
#include "itkDerivativeOperator.h"
#include "itkGPUScalarAnisotropicDiffusionFunction.h"

namespace itk
{

template< typename TImage >
GPUScalarAnisotropicDiffusionFunction< TImage >
::GPUScalarAnisotropicDiffusionFunction()
{
  this->m_AnisotropicDiffusionFunctionGPUBuffer = GPUDataManager::New();
  this->m_AnisotropicDiffusionFunctionGPUKernelManager = GPUKernelManager::New();

  // load GPU kernel
  std::ostringstream defines;

  if(ImageDimension > 3 || ImageDimension < 1)
    {
    itkExceptionMacro("GPUScalarAnisotropicDiffusionFunction supports 1/2/3D image.");
    }

  defines << "#define DIM_" << ImageDimension << "\n";

  defines << "#define PIXELTYPE ";
  GetTypenameInString( typeid ( typename TImage::PixelType ), defines );
  std::cout << "Defines: " << defines.str() << std::endl;

  const char* GPUSource = GPUScalarAnisotropicDiffusionFunction::GetOpenCLSource();

  // load and build program
  this->m_AnisotropicDiffusionFunctionGPUKernelManager->LoadProgramFromString( GPUSource, defines.str().c_str() );

  // create kernel
  this->m_AverageGradientMagnitudeSquaredGPUKernelHandle =
    this->m_AnisotropicDiffusionFunctionGPUKernelManager->CreateKernel("AverageGradientMagnitudeSquared");
}

template< typename TImage >
void
GPUScalarAnisotropicDiffusionFunction< TImage >
::GPUCalculateAverageGradientMagnitudeSquared(TImage *ip)
{
  // GPU kernel to compute Average Squared Gradient Magnitude
  typedef typename itk::GPUTraits< TImage >::Type GPUImageType;
  typename GPUImageType::Pointer  inPtr =  dynamic_cast< GPUImageType * >( ip );
  typename GPUImageType::SizeType outSize = inPtr->GetLargestPossibleRegion().GetSize();

  int imgSize[3];
  imgSize[0] = imgSize[1] = imgSize[2] = 1;
  float imgScale[3];
  imgScale[0] = imgScale[1] = imgScale[2] = 1.0f;
  int ImageDim = (int)TImage::ImageDimension;

  size_t localSize[3], globalSize[3];
  localSize[0] = localSize[1] = localSize[2] = 1;
  globalSize[0] = globalSize[1] = globalSize[2] = 1;
  unsigned int blockSize = OpenCLGetLocalBlockSize(ImageDim);

  unsigned int numPixel = 1;
  unsigned int bufferSize = 1;
  for(int i=0; i<ImageDim; i++)
    {
    imgSize[i] = outSize[i];
    imgScale[i] = this->m_ScaleCoefficients[i];
    localSize[i] = (blockSize <= outSize[i]) ? blockSize : 1;
    globalSize[i] = localSize[i]*(unsigned int)ceil( (float)outSize[i]/(float)localSize[i]); //
                                                                                             // total
                                                                                             // #
                                                                                             // of
                                                                                             // threads
    bufferSize *= globalSize[i]/localSize[i];
    numPixel *= imgSize[i];
    }

  // Initialize & Allocate GPU Buffer
  if(bufferSize != this->m_AnisotropicDiffusionFunctionGPUBuffer->GetBufferSize() )
    {
    this->m_AnisotropicDiffusionFunctionGPUBuffer->Initialize();
    this->m_AnisotropicDiffusionFunctionGPUBuffer->SetBufferSize( sizeof(float)*bufferSize );
    this->m_AnisotropicDiffusionFunctionGPUBuffer->Allocate();
    }

  typename GPUKernelManager::Pointer kernelManager = this->m_AnisotropicDiffusionFunctionGPUKernelManager;
  int                                kernelHandle = this->m_AverageGradientMagnitudeSquaredGPUKernelHandle;

  // Set arguments
  int argidx = 0;
  kernelManager->SetKernelArgWithImage(kernelHandle, argidx++, inPtr->GetGPUDataManager() );
  kernelManager->SetKernelArgWithImage(kernelHandle, argidx++, this->m_AnisotropicDiffusionFunctionGPUBuffer);

  // Set shared memory args
  if (ImageDim == 2)
  {
    kernelManager->SetKernelArg(kernelHandle, argidx++, sizeof(float) * localSize[0] * localSize[1], NULL);
    kernelManager->SetKernelArg(kernelHandle, argidx++, sizeof(float) * localSize[0], NULL);
    kernelManager->SetKernelArg(kernelHandle, argidx++, sizeof(float) * localSize[0], NULL);
    kernelManager->SetKernelArg(kernelHandle, argidx++, sizeof(float) * localSize[1], NULL);
    kernelManager->SetKernelArg(kernelHandle, argidx++, sizeof(float) * localSize[1], NULL);
  }
  else if (ImageDim == 3)
  {
    kernelManager->SetKernelArg(kernelHandle, argidx++, sizeof(float) * localSize[0] * localSize[1] * localSize[2], NULL);
    kernelManager->SetKernelArg(kernelHandle, argidx++, sizeof(float) * localSize[0] * localSize[1], NULL);
    kernelManager->SetKernelArg(kernelHandle, argidx++, sizeof(float) * localSize[0] * localSize[1], NULL);
    kernelManager->SetKernelArg(kernelHandle, argidx++, sizeof(float) * localSize[0] * localSize[2], NULL);
    kernelManager->SetKernelArg(kernelHandle, argidx++, sizeof(float) * localSize[0] * localSize[2], NULL);
    kernelManager->SetKernelArg(kernelHandle, argidx++, sizeof(float) * localSize[1] * localSize[2], NULL);
    kernelManager->SetKernelArg(kernelHandle, argidx++, sizeof(float) * localSize[1] * localSize[2], NULL);
  }
  else
  {
    // no need to set shared memory args when dimension is not 2 or 3
  }

  // Set filter scale parameter
  for(int i=0; i<ImageDim; i++)
    {
    kernelManager->SetKernelArg(kernelHandle, argidx++, sizeof(float), &(imgScale[i]) );
    }

  // Set image size
  for(int i=0; i<ImageDim; i++)
    {
    kernelManager->SetKernelArg(kernelHandle, argidx++, sizeof(int), &(imgSize[i]) );
    }

  // launch kernel
  kernelManager->LaunchKernel(kernelHandle, ImageDim, globalSize, localSize );

  // Read back intermediate sums from GPU and compute final value
  double sum = 0;
  float *intermSum = new float[bufferSize];

  this->m_AnisotropicDiffusionFunctionGPUBuffer->SetCPUBufferPointer( intermSum );
  this->m_AnisotropicDiffusionFunctionGPUBuffer->SetCPUDirtyFlag( true );   //
                                                                            // CPU
                                                                            // is
                                                                            // dirty
  this->m_AnisotropicDiffusionFunctionGPUBuffer->SetGPUDirtyFlag( false );
  this->m_AnisotropicDiffusionFunctionGPUBuffer->UpdateCPUBuffer();   //
                                                                            // Copy
                                                                            // GPU->CPU

  for(int i=0; i<(int)bufferSize; i++)
    {
    sum += (double)intermSum[i];
    }

  this->SetAverageGradientMagnitudeSquared( (double)( sum / (double)numPixel ) );

  delete[] intermSum;
}

} // end namespace itk

#endif