/usr/include/ITK-4.5/itkGaussianDerivativeImageFunction.hxx is in libinsighttoolkit4-dev 4.5.0-3.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 | /*=========================================================================
*
* Copyright Insight Software Consortium
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0.txt
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
*=========================================================================*/
#ifndef __itkGaussianDerivativeImageFunction_hxx
#define __itkGaussianDerivativeImageFunction_hxx
#include "itkGaussianDerivativeImageFunction.h"
#include "itkCompensatedSummation.h"
namespace itk
{
/** Set the Input Image */
template< typename TInputImage, typename TOutput >
GaussianDerivativeImageFunction< TInputImage, TOutput >
::GaussianDerivativeImageFunction()
{
typename GaussianFunctionType::ArrayType mean;
mean[0] = 0.0;
for ( unsigned int i = 0; i < itkGetStaticConstMacro(ImageDimension2); i++ )
{
m_Sigma[i] = 1.0;
m_Extent[i] = 1.0;
}
m_UseImageSpacing = true;
m_GaussianDerivativeFunction = GaussianDerivativeFunctionType::New();
m_GaussianFunction = GaussianFunctionType::New();
m_OperatorImageFunction = OperatorImageFunctionType::New();
m_GaussianFunction->SetMean(mean);
m_GaussianFunction->SetNormalized(false); // faster
m_GaussianDerivativeFunction->SetNormalized(false); // faster
this->RecomputeGaussianKernel();
}
/** Print self method */
template< typename TInputImage, typename TOutput >
void
GaussianDerivativeImageFunction< TInputImage, TOutput >
::PrintSelf(std::ostream & os, Indent indent) const
{
this->Superclass::PrintSelf(os, indent);
os << indent << "UseImageSpacing: " << m_UseImageSpacing << std::endl;
os << indent << "Sigma: " << m_Sigma << std::endl;
os << indent << "Extent: " << m_Extent << std::endl;
os << indent << "OperatorArray: " << m_OperatorArray << std::endl;
os << indent << "ContinuousOperatorArray: "
<< m_ContinuousOperatorArray << std::endl;
os << indent << "OperatorImageFunction: "
<< m_OperatorImageFunction << std::endl;
os << indent << "GaussianDerivativeFunction: "
<< m_GaussianDerivativeFunction << std::endl;
os << indent << "GaussianFunction: "
<< m_GaussianFunction << std::endl;
}
/** Set the input image */
template< typename TInputImage, typename TOutput >
void
GaussianDerivativeImageFunction< TInputImage, TOutput >
::SetInputImage(const InputImageType *ptr)
{
Superclass::SetInputImage(ptr);
m_OperatorImageFunction->SetInputImage(ptr);
}
/** Set the variance of the gaussian in each direction */
template< typename TInputImage, typename TOutput >
void
GaussianDerivativeImageFunction< TInputImage, TOutput >
::SetSigma(const double *sigma)
{
unsigned int i;
for ( i = 0; i < itkGetStaticConstMacro(ImageDimension2); i++ )
{
if ( sigma[i] != m_Sigma[i] )
{
break;
}
}
if ( i < itkGetStaticConstMacro(ImageDimension2) )
{
for ( i = 0; i < itkGetStaticConstMacro(ImageDimension2); i++ )
{
m_Sigma[i] = sigma[i];
}
this->RecomputeGaussianKernel();
}
}
/** Set the variance of the gaussian in each direction */
template< typename TInputImage, typename TOutput >
void
GaussianDerivativeImageFunction< TInputImage, TOutput >
::SetSigma(const double sigma)
{
unsigned int i;
for ( i = 0; i < itkGetStaticConstMacro(ImageDimension2); i++ )
{
if ( sigma != m_Sigma[i] )
{
break;
}
}
if ( i < itkGetStaticConstMacro(ImageDimension2) )
{
for ( i = 0; i < itkGetStaticConstMacro(ImageDimension2); i++ )
{
m_Sigma[i] = sigma;
}
this->RecomputeGaussianKernel();
}
}
/** Set the extent of the gaussian in each direction */
template< typename TInputImage, typename TOutput >
void
GaussianDerivativeImageFunction< TInputImage, TOutput >
::SetExtent(const double *extent)
{
unsigned int i;
for ( i = 0; i < itkGetStaticConstMacro(ImageDimension2); i++ )
{
if ( extent[i] != m_Extent[i] )
{
break;
}
}
if ( i < itkGetStaticConstMacro(ImageDimension2) )
{
for ( i = 0; i < itkGetStaticConstMacro(ImageDimension2); i++ )
{
m_Extent[i] = extent[i];
}
this->RecomputeGaussianKernel();
}
}
/** Set the extent of the gaussian in each direction */
template< typename TInputImage, typename TOutput >
void
GaussianDerivativeImageFunction< TInputImage, TOutput >
::SetExtent(const double extent)
{
unsigned int i;
for ( i = 0; i < itkGetStaticConstMacro(ImageDimension2); i++ )
{
if ( extent != m_Extent[i] )
{
break;
}
}
if ( i < itkGetStaticConstMacro(ImageDimension2) )
{
for ( i = 0; i < itkGetStaticConstMacro(ImageDimension2); i++ )
{
m_Extent[i] = extent;
}
this->RecomputeGaussianKernel();
}
}
/** Recompute the gaussian kernel used to evaluate indexes
* This should use a fastest Derivative Gaussian operator
*/
template< typename TInputImage, typename TOutput >
void
GaussianDerivativeImageFunction< TInputImage, TOutput >
::RecomputeGaussianKernel()
{
unsigned int direction = 0;
for ( unsigned int op = 0; op < itkGetStaticConstMacro(ImageDimension2); ++op )
{
// Set the derivative of the gaussian first
OperatorNeighborhoodType dogNeighborhood;
typename GaussianDerivativeFunctionType::InputType pt;
typename NeighborhoodType::SizeType size;
size.Fill(0);
size[direction] = static_cast<SizeValueType>( m_Sigma[direction] * m_Extent[direction] );
dogNeighborhood.SetRadius(size);
typename GaussianDerivativeFunctionType::ArrayType s;
s[0] = m_Sigma[direction];
m_GaussianDerivativeFunction->SetSigma(s);
typename OperatorNeighborhoodType::Iterator it = dogNeighborhood.Begin();
unsigned int i = 0;
while ( it != dogNeighborhood.End() )
{
pt[0] = dogNeighborhood.GetOffset(i)[direction];
if ( ( m_UseImageSpacing == true ) && ( this->GetInputImage() ) )
{
if ( this->GetInputImage()->GetSpacing()[direction] == 0.0 )
{
itkExceptionMacro(<< "Pixel spacing cannot be zero");
}
else
{
pt[0] *= this->GetInputImage()->GetSpacing()[direction];
}
}
( *it ) = m_GaussianDerivativeFunction->Evaluate(pt);
++i;
++it;
}
m_OperatorArray[op * 2] = dogNeighborhood;
// Set the gaussian operator
m_GaussianFunction->SetSigma(s);
OperatorNeighborhoodType gaussianNeighborhood;
gaussianNeighborhood.SetRadius(size);
it = gaussianNeighborhood.Begin();
i = 0;
CompensatedSummation< TOutput > sum;
while ( it != gaussianNeighborhood.End() )
{
pt[0] = gaussianNeighborhood.GetOffset(i)[direction];
if ( ( m_UseImageSpacing == true ) && ( this->GetInputImage() ) )
{
if ( this->GetInputImage()->GetSpacing()[direction] == 0.0 )
{
itkExceptionMacro(<< "Pixel spacing cannot be zero");
}
else
{
pt[0] *= this->GetInputImage()->GetSpacing()[direction];
}
}
( *it ) = m_GaussianFunction->Evaluate(pt);
sum += ( *it );
++i;
++it;
}
// Make the filter DC-Constant
it = gaussianNeighborhood.Begin();
const TOutput sumInverse = 1. / sum.GetSum();
while ( it != gaussianNeighborhood.End() )
{
( *it ) *= sumInverse;
++it;
}
m_OperatorArray[op * 2 + 1] = gaussianNeighborhood;
++direction;
}
}
/** Evaluate the function at the specifed index */
template< typename TInputImage, typename TOutput >
typename GaussianDerivativeImageFunction< TInputImage, TOutput >::OutputType
GaussianDerivativeImageFunction< TInputImage, TOutput >
::EvaluateAtIndex(const IndexType & index) const
{
OutputType gradient;
for ( unsigned int ii = 0; ii < itkGetStaticConstMacro(ImageDimension2); ++ii )
{
// Apply each gaussian kernel to a subset of the image
InputPixelType value = static_cast< double >( this->GetInputImage()->GetPixel(index) );
// gaussian blurring first
for ( unsigned int direction = 0; direction < itkGetStaticConstMacro(ImageDimension2); ++direction )
{
if ( ii != direction )
{
const unsigned int idx = 2 * direction + 1; // select only gaussian kernel;
const unsigned int center = (unsigned int)( ( m_OperatorArray[idx].GetSize()[direction] - 1 ) / 2 );
TOutput centerval = m_OperatorArray[idx].GetCenterValue();
m_OperatorArray[idx][center] = 0;
m_OperatorImageFunction->SetOperator(m_OperatorArray[idx]);
value = m_OperatorImageFunction->EvaluateAtIndex(index) + centerval * value;
}
}
// then derivative in the direction
const unsigned int idx = 2 * ii;
const signed int center = (unsigned int)( ( m_OperatorArray[idx].GetSize()[ii] - 1 ) / 2 );
TOutput centerval = m_OperatorArray[idx].GetCenterValue();
m_OperatorArray[idx][center] = 0;
m_OperatorImageFunction->SetOperator(m_OperatorArray[idx]);
value = m_OperatorImageFunction->EvaluateAtIndex(index) + centerval * value;
gradient[ii] = value;
}
return gradient;
}
/** Recompute the gaussian kernel used to evaluate indexes
* The variance should be uniform */
template< typename TInputImage, typename TOutput >
void
GaussianDerivativeImageFunction< TInputImage, TOutput >
::RecomputeContinuousGaussianKernel(
const double *offset) const
{
unsigned int direction = 0;
for ( unsigned int op = 0; op < itkGetStaticConstMacro(ImageDimension2); ++op )
{
// Set the derivative of the gaussian first
OperatorNeighborhoodType dogNeighborhood;
typename GaussianDerivativeFunctionType::InputType pt;
typename OperatorNeighborhoodType::SizeType size;
size.Fill(0);
size[direction] = static_cast<SizeValueType>( m_Sigma[direction] * m_Extent[direction] );
dogNeighborhood.SetRadius(size);
typename GaussianDerivativeFunctionType::ArrayType s;
s[0] = m_Sigma[direction];
m_GaussianDerivativeFunction->SetSigma(s);
typename OperatorNeighborhoodType::Iterator it = dogNeighborhood.Begin();
unsigned int ii = 0;
while ( it != dogNeighborhood.End() )
{
pt[0] = dogNeighborhood.GetOffset(ii)[direction] - offset[direction];
if ( ( m_UseImageSpacing == true ) && ( this->GetInputImage() ) )
{
if ( this->GetInputImage()->GetSpacing()[direction] == 0.0 )
{
itkExceptionMacro(<< "Pixel spacing cannot be zero");
}
else
{
pt[0] *= this->GetInputImage()->GetSpacing()[direction];
}
}
( *it ) = m_GaussianDerivativeFunction->Evaluate(pt);
++ii;
++it;
}
m_ContinuousOperatorArray[op * 2] = dogNeighborhood;
// Set the gaussian operator
m_GaussianFunction->SetSigma(s);
OperatorNeighborhoodType gaussianNeighborhood;
gaussianNeighborhood.SetRadius(size);
it = gaussianNeighborhood.Begin();
ii = 0;
CompensatedSummation< TOutput > sum;
while ( it != gaussianNeighborhood.End() )
{
pt[0] = gaussianNeighborhood.GetOffset(ii)[direction] - offset[direction];
if ( ( m_UseImageSpacing == true ) && ( this->GetInputImage() ) )
{
if ( this->GetInputImage()->GetSpacing()[direction] == 0.0 )
{
itkExceptionMacro(<< "Pixel spacing cannot be zero");
}
else
{
pt[0] *= this->GetInputImage()->GetSpacing()[direction];
}
}
( *it ) = m_GaussianFunction->Evaluate(pt);
sum += ( *it );
++ii;
++it;
}
// Make the filter DC-Constant
it = gaussianNeighborhood.Begin();
const TOutput sumInverse = 1. / sum.GetSum();
while ( it != gaussianNeighborhood.End() )
{
( *it ) *= sumInverse;
++it;
}
m_ContinuousOperatorArray[op * 2 + 1] = gaussianNeighborhood;
++direction;
}
}
/** Evaluate the function at the specifed point */
template< typename TInputImage, typename TOutput >
typename GaussianDerivativeImageFunction< TInputImage, TOutput >::OutputType
GaussianDerivativeImageFunction< TInputImage, TOutput >
::Evaluate(const PointType & point) const
{
IndexType index;
this->ConvertPointToNearestIndex(point, index);
return this->EvaluateAtIndex (index);
}
/** Evaluate the function at specified ContinousIndex position.*/
template< typename TInputImage, typename TOutput >
typename GaussianDerivativeImageFunction< TInputImage, TOutput >::OutputType
GaussianDerivativeImageFunction< TInputImage, TOutput >
::EvaluateAtContinuousIndex(const ContinuousIndexType & cindex) const
{
IndexType index;
this->ConvertContinuousIndexToNearestIndex(cindex, index);
return this->EvaluateAtIndex(index);
}
} // end namespace itk
#endif
|