This file is indexed.

/usr/include/ITK-4.5/itkGaussianDerivativeImageFunction.hxx is in libinsighttoolkit4-dev 4.5.0-3.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
/*=========================================================================
 *
 *  Copyright Insight Software Consortium
 *
 *  Licensed under the Apache License, Version 2.0 (the "License");
 *  you may not use this file except in compliance with the License.
 *  You may obtain a copy of the License at
 *
 *         http://www.apache.org/licenses/LICENSE-2.0.txt
 *
 *  Unless required by applicable law or agreed to in writing, software
 *  distributed under the License is distributed on an "AS IS" BASIS,
 *  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 *  See the License for the specific language governing permissions and
 *  limitations under the License.
 *
 *=========================================================================*/
#ifndef __itkGaussianDerivativeImageFunction_hxx
#define __itkGaussianDerivativeImageFunction_hxx

#include "itkGaussianDerivativeImageFunction.h"

#include "itkCompensatedSummation.h"

namespace itk
{
/** Set the Input Image */
template< typename TInputImage, typename TOutput >
GaussianDerivativeImageFunction< TInputImage, TOutput >
::GaussianDerivativeImageFunction()
{
  typename GaussianFunctionType::ArrayType mean;
  mean[0] = 0.0;
  for ( unsigned int i = 0; i < itkGetStaticConstMacro(ImageDimension2); i++ )
    {
    m_Sigma[i] = 1.0;
    m_Extent[i] = 1.0;
    }
  m_UseImageSpacing = true;
  m_GaussianDerivativeFunction = GaussianDerivativeFunctionType::New();
  m_GaussianFunction = GaussianFunctionType::New();
  m_OperatorImageFunction = OperatorImageFunctionType::New();
  m_GaussianFunction->SetMean(mean);
  m_GaussianFunction->SetNormalized(false);           // faster
  m_GaussianDerivativeFunction->SetNormalized(false); // faster
  this->RecomputeGaussianKernel();
}

/** Print self method */
template< typename TInputImage, typename TOutput >
void
GaussianDerivativeImageFunction< TInputImage, TOutput >
::PrintSelf(std::ostream & os, Indent indent) const
{
  this->Superclass::PrintSelf(os, indent);
  os << indent << "UseImageSpacing: " << m_UseImageSpacing << std::endl;

  os << indent << "Sigma: " << m_Sigma << std::endl;
  os << indent << "Extent: " << m_Extent << std::endl;

  os << indent << "OperatorArray: " << m_OperatorArray << std::endl;
  os << indent << "ContinuousOperatorArray: "
     << m_ContinuousOperatorArray << std::endl;
  os << indent << "OperatorImageFunction: "
     << m_OperatorImageFunction << std::endl;
  os << indent << "GaussianDerivativeFunction: "
     << m_GaussianDerivativeFunction << std::endl;
  os << indent << "GaussianFunction: "
     << m_GaussianFunction << std::endl;
}

/** Set the input image */
template< typename TInputImage, typename TOutput >
void
GaussianDerivativeImageFunction< TInputImage, TOutput >
::SetInputImage(const InputImageType *ptr)
{
  Superclass::SetInputImage(ptr);
  m_OperatorImageFunction->SetInputImage(ptr);
}

/** Set the variance of the gaussian in each direction */
template< typename TInputImage, typename TOutput >
void
GaussianDerivativeImageFunction< TInputImage, TOutput >
::SetSigma(const double *sigma)
{
  unsigned int i;

  for ( i = 0; i < itkGetStaticConstMacro(ImageDimension2); i++ )
    {
    if ( sigma[i] != m_Sigma[i] )
      {
      break;
      }
    }
  if ( i < itkGetStaticConstMacro(ImageDimension2) )
    {
    for ( i = 0; i < itkGetStaticConstMacro(ImageDimension2); i++ )
      {
      m_Sigma[i] = sigma[i];
      }
    this->RecomputeGaussianKernel();
    }
}

/** Set the variance of the gaussian in each direction */
template< typename TInputImage, typename TOutput >
void
GaussianDerivativeImageFunction< TInputImage, TOutput >
::SetSigma(const double sigma)
{
  unsigned int i;

  for ( i = 0; i < itkGetStaticConstMacro(ImageDimension2); i++ )
    {
    if ( sigma != m_Sigma[i] )
      {
      break;
      }
    }
  if ( i < itkGetStaticConstMacro(ImageDimension2) )
    {
    for ( i = 0; i < itkGetStaticConstMacro(ImageDimension2); i++ )
      {
      m_Sigma[i] = sigma;
      }
    this->RecomputeGaussianKernel();
    }
}

/** Set the extent of the gaussian in each direction */
template< typename TInputImage, typename TOutput >
void
GaussianDerivativeImageFunction< TInputImage, TOutput >
::SetExtent(const double *extent)
{
  unsigned int i;

  for ( i = 0; i < itkGetStaticConstMacro(ImageDimension2); i++ )
    {
    if ( extent[i] != m_Extent[i] )
      {
      break;
      }
    }
  if ( i < itkGetStaticConstMacro(ImageDimension2) )
    {
    for ( i = 0; i < itkGetStaticConstMacro(ImageDimension2); i++ )
      {
      m_Extent[i] = extent[i];
      }
    this->RecomputeGaussianKernel();
    }
}

/** Set the extent of the gaussian in each direction */
template< typename TInputImage, typename TOutput >
void
GaussianDerivativeImageFunction< TInputImage, TOutput >
::SetExtent(const double extent)
{
  unsigned int i;

  for ( i = 0; i < itkGetStaticConstMacro(ImageDimension2); i++ )
    {
    if ( extent != m_Extent[i] )
      {
      break;
      }
    }
  if ( i < itkGetStaticConstMacro(ImageDimension2) )
    {
    for ( i = 0; i < itkGetStaticConstMacro(ImageDimension2); i++ )
      {
      m_Extent[i] = extent;
      }
    this->RecomputeGaussianKernel();
    }
}

/** Recompute the gaussian kernel used to evaluate indexes
 *  This should use a fastest Derivative Gaussian operator
 */
template< typename TInputImage, typename TOutput >
void
GaussianDerivativeImageFunction< TInputImage, TOutput >
::RecomputeGaussianKernel()
{
  unsigned int direction = 0;

  for ( unsigned int op = 0; op < itkGetStaticConstMacro(ImageDimension2); ++op )
    {
    // Set the derivative of the gaussian first
    OperatorNeighborhoodType dogNeighborhood;
    typename GaussianDerivativeFunctionType::InputType pt;
    typename NeighborhoodType::SizeType size;
    size.Fill(0);
    size[direction] = static_cast<SizeValueType>( m_Sigma[direction] * m_Extent[direction] );
    dogNeighborhood.SetRadius(size);

    typename GaussianDerivativeFunctionType::ArrayType s;
    s[0] = m_Sigma[direction];
    m_GaussianDerivativeFunction->SetSigma(s);

    typename OperatorNeighborhoodType::Iterator it = dogNeighborhood.Begin();

    unsigned int i = 0;
    while ( it != dogNeighborhood.End() )
      {
      pt[0] = dogNeighborhood.GetOffset(i)[direction];

      if ( ( m_UseImageSpacing == true ) && ( this->GetInputImage() ) )
        {
        if ( this->GetInputImage()->GetSpacing()[direction] == 0.0 )
          {
          itkExceptionMacro(<< "Pixel spacing cannot be zero");
          }
        else
          {
          pt[0] *= this->GetInputImage()->GetSpacing()[direction];
          }
        }
      ( *it ) = m_GaussianDerivativeFunction->Evaluate(pt);
      ++i;
      ++it;
      }

    m_OperatorArray[op * 2] = dogNeighborhood;

    // Set the gaussian operator
    m_GaussianFunction->SetSigma(s);
    OperatorNeighborhoodType gaussianNeighborhood;
    gaussianNeighborhood.SetRadius(size);

    it = gaussianNeighborhood.Begin();

    i = 0;
    CompensatedSummation< TOutput > sum;
    while ( it != gaussianNeighborhood.End() )
      {
      pt[0] = gaussianNeighborhood.GetOffset(i)[direction];

      if ( ( m_UseImageSpacing == true ) && ( this->GetInputImage() ) )
        {
        if ( this->GetInputImage()->GetSpacing()[direction] == 0.0 )
          {
          itkExceptionMacro(<< "Pixel spacing cannot be zero");
          }
        else
          {
          pt[0] *= this->GetInputImage()->GetSpacing()[direction];
          }
        }

      ( *it ) = m_GaussianFunction->Evaluate(pt);
      sum += ( *it );
      ++i;
      ++it;
      }

    // Make the filter DC-Constant
    it = gaussianNeighborhood.Begin();
    const TOutput sumInverse = 1. / sum.GetSum();
    while ( it != gaussianNeighborhood.End() )
      {
      ( *it ) *= sumInverse;
      ++it;
      }

    m_OperatorArray[op * 2 + 1] = gaussianNeighborhood;
    ++direction;
    }
}

/** Evaluate the function at the specifed index */
template< typename TInputImage, typename TOutput >
typename GaussianDerivativeImageFunction< TInputImage, TOutput >::OutputType
GaussianDerivativeImageFunction< TInputImage, TOutput >
::EvaluateAtIndex(const IndexType & index) const
{
  OutputType gradient;

  for ( unsigned int ii = 0; ii < itkGetStaticConstMacro(ImageDimension2); ++ii )
    {
    // Apply each gaussian kernel to a subset of the image
    InputPixelType value = static_cast< double >( this->GetInputImage()->GetPixel(index) );

    // gaussian blurring first
    for ( unsigned int direction = 0; direction < itkGetStaticConstMacro(ImageDimension2); ++direction )
      {
      if ( ii != direction )
        {
        const unsigned int idx = 2 * direction + 1; // select only gaussian kernel;
        const unsigned int center = (unsigned int)( ( m_OperatorArray[idx].GetSize()[direction] - 1 ) / 2 );
        TOutput      centerval = m_OperatorArray[idx].GetCenterValue();
        m_OperatorArray[idx][center] = 0;
        m_OperatorImageFunction->SetOperator(m_OperatorArray[idx]);
        value = m_OperatorImageFunction->EvaluateAtIndex(index) + centerval * value;
        }
      }

    // then derivative in the direction
    const unsigned int idx = 2 * ii;
    const signed int center = (unsigned int)( ( m_OperatorArray[idx].GetSize()[ii] - 1 ) / 2 );
    TOutput    centerval = m_OperatorArray[idx].GetCenterValue();
    m_OperatorArray[idx][center] = 0;
    m_OperatorImageFunction->SetOperator(m_OperatorArray[idx]);
    value = m_OperatorImageFunction->EvaluateAtIndex(index) + centerval * value;

    gradient[ii] = value;
    }

  return gradient;
}

/** Recompute the gaussian kernel used to evaluate indexes
 *  The variance should be uniform */
template< typename TInputImage, typename TOutput >
void
GaussianDerivativeImageFunction< TInputImage, TOutput >
::RecomputeContinuousGaussianKernel(
  const double *offset) const
{
  unsigned int direction = 0;

  for ( unsigned int op = 0; op < itkGetStaticConstMacro(ImageDimension2); ++op )
    {
    // Set the derivative of the gaussian first
    OperatorNeighborhoodType dogNeighborhood;
    typename GaussianDerivativeFunctionType::InputType pt;
    typename OperatorNeighborhoodType::SizeType size;
    size.Fill(0);
    size[direction] = static_cast<SizeValueType>( m_Sigma[direction] * m_Extent[direction] );
    dogNeighborhood.SetRadius(size);

    typename GaussianDerivativeFunctionType::ArrayType s;
    s[0] = m_Sigma[direction];
    m_GaussianDerivativeFunction->SetSigma(s);

    typename OperatorNeighborhoodType::Iterator it = dogNeighborhood.Begin();

    unsigned int ii = 0;
    while ( it != dogNeighborhood.End() )
      {
      pt[0] = dogNeighborhood.GetOffset(ii)[direction] - offset[direction];

      if ( ( m_UseImageSpacing == true ) && ( this->GetInputImage() ) )
        {
        if ( this->GetInputImage()->GetSpacing()[direction] == 0.0 )
          {
          itkExceptionMacro(<< "Pixel spacing cannot be zero");
          }
        else
          {
          pt[0] *= this->GetInputImage()->GetSpacing()[direction];
          }
        }
      ( *it ) = m_GaussianDerivativeFunction->Evaluate(pt);
      ++ii;
      ++it;
      }

    m_ContinuousOperatorArray[op * 2] = dogNeighborhood;

    // Set the gaussian operator
    m_GaussianFunction->SetSigma(s);
    OperatorNeighborhoodType gaussianNeighborhood;
    gaussianNeighborhood.SetRadius(size);

    it = gaussianNeighborhood.Begin();

    ii = 0;
    CompensatedSummation< TOutput > sum;
    while ( it != gaussianNeighborhood.End() )
      {
      pt[0] = gaussianNeighborhood.GetOffset(ii)[direction] - offset[direction];

      if ( ( m_UseImageSpacing == true ) && ( this->GetInputImage() ) )
        {
        if ( this->GetInputImage()->GetSpacing()[direction] == 0.0 )
          {
          itkExceptionMacro(<< "Pixel spacing cannot be zero");
          }
        else
          {
          pt[0] *= this->GetInputImage()->GetSpacing()[direction];
          }
        }

      ( *it ) = m_GaussianFunction->Evaluate(pt);
      sum += ( *it );
      ++ii;
      ++it;
      }

    // Make the filter DC-Constant
    it = gaussianNeighborhood.Begin();
    const TOutput sumInverse = 1. / sum.GetSum();
    while ( it != gaussianNeighborhood.End() )
      {
      ( *it ) *= sumInverse;
      ++it;
      }

    m_ContinuousOperatorArray[op * 2 + 1] = gaussianNeighborhood;
    ++direction;
    }
}

/** Evaluate the function at the specifed point */
template< typename TInputImage, typename TOutput >
typename GaussianDerivativeImageFunction< TInputImage, TOutput >::OutputType
GaussianDerivativeImageFunction< TInputImage, TOutput >
::Evaluate(const PointType & point) const
{
  IndexType index;

  this->ConvertPointToNearestIndex(point, index);
  return this->EvaluateAtIndex (index);
}

/** Evaluate the function at specified ContinousIndex position.*/
template< typename TInputImage, typename TOutput >
typename GaussianDerivativeImageFunction< TInputImage, TOutput >::OutputType
GaussianDerivativeImageFunction< TInputImage, TOutput >
::EvaluateAtContinuousIndex(const ContinuousIndexType & cindex) const
{
  IndexType index;

  this->ConvertContinuousIndexToNearestIndex(cindex, index);
  return this->EvaluateAtIndex(index);
}
} // end namespace itk

#endif