/usr/include/ITK-4.5/itkGaussianDistribution.h is in libinsighttoolkit4-dev 4.5.0-3.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 | /*=========================================================================
*
* Copyright Insight Software Consortium
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0.txt
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
*=========================================================================*/
#ifndef __itkGaussianDistribution_h
#define __itkGaussianDistribution_h
#include "itkProbabilityDistribution.h"
namespace itk
{
namespace Statistics
{
/** \class GaussianDistribution
* \brief GaussianDistribution class defines the interface for a
* univariate Gaussian distribution (pdfs, cdfs, etc.).
*
* GaussianDistribution provides access to the probability density
* function (pdf), the cumulative distribution function (cdf), and the
* inverse cumulative distribution function for a Gaussian distribution.
*
* The EvaluatePDF(), EvaluateCDF, EvaluateInverseCDF() methods are
* all virtual, allowing algorithms to be written with an abstract
* interface to a distribution (with said distribution provided to the
* algorithm at run-time). Static methods, not requiring an instance
* of the distribution, are also provided. The static methods allow
* for optimized access to distributions when the distribution is
* known a priori to the algorithm.
*
* GaussianDistributions are univariate. Multivariate versions may
* be provided under a separate superclass (since the parameters to the
* pdf and cdf would have to be vectors not scalars).
*
* GaussianDistributions can be used for Z-score statistical tests.
*
* \note This work is part of the National Alliance for Medical Image
* Computing (NAMIC), funded by the National Institutes of Health
* through the NIH Roadmap for Medical Research, Grant U54 EB005149.
* Information on the National Centers for Biomedical Computing
* can be obtained from http://commonfund.nih.gov/bioinformatics.
* \ingroup ITKStatistics
*
* \wiki
* \wikiexample{Statistics/GaussianDistribution,Create a Gaussian distribution}
* \endwiki
*/
class GaussianDistribution:
public ProbabilityDistribution
{
public:
/** Standard class typedefs */
typedef GaussianDistribution Self;
typedef ProbabilityDistribution Superclass;
typedef SmartPointer< Self > Pointer;
typedef SmartPointer< const Self > ConstPointer;
/** Strandard macros */
itkTypeMacro(GaussianDistribution, ProbabilityDistribution);
/** Method for creation through the object factory. */
itkNewMacro(Self);
/** Return the number of parameters. For a univariate Gaussian,
* this is 2 (mean, variance). */
virtual SizeValueType GetNumberOfParameters() const { return 2; }
/** Evaluate the probability density function (pdf). The parameters
* of the distribution are assigned via SetParameters(). */
virtual double EvaluatePDF(double x) const;
/** Evaluate the probability density function (pdf). The parameters
* for the distribution are passed as a parameters vector. The
* ordering of the parameters is (mean, variance). */
virtual double EvaluatePDF(double x, const ParametersType &) const;
/** Evaluate the probability density function (pdf). The parameters
* of the distribution are passed as separate parameters. */
virtual double EvaluatePDF(double x, double mean, double variance) const;
/** Evaluate the cumulative distribution function (cdf). The parameters
* of the distribution are assigned via SetParameters(). */
virtual double EvaluateCDF(double x) const;
/** Evaluate the cumulative distribution function (cdf). The parameters
* for the distribution are passed as a parameters vector. The
* ordering of the parameters is (mean, variance). */
virtual double EvaluateCDF(double x, const ParametersType &) const;
/** Evaluate the cumulative distribution function (cdf). The parameters
* of the distribution are passed as separate parameters. */
virtual double EvaluateCDF(double x, double mean, double variance) const;
/** Evaluate the inverse cumulative distribution function (inverse
* cdf). Parameter p must be between 0.0 and 1.0. The parameters
* of the distribution are assigned via SetParameters(). */
virtual double EvaluateInverseCDF(double p) const;
/** Evaluate the inverse cumulative distribution function (inverse
* cdf). Parameter p must be between 0.0 and 1.0. The parameters
* for the distribution are passed as a parameters vector. The
* ordering of the parameters is (mean, variance). */
virtual double EvaluateInverseCDF(double p, const ParametersType &) const;
/** Evaluate the inverse cumulative distribution function (inverse
* cdf). Parameter p must be between 0.0 and 1.0. The parameters
* of the distribution are passed as separate parameters. */
virtual double EvaluateInverseCDF(double p,
double mean,
double variance) const;
/** Set the mean of the Gaussian distribution. Defaults to 0.0. The
* mean is stored in position 0 of the parameters vector. */
virtual void SetMean(double);
/** Get the mean of the Gaussian distribution. Defaults to 0.0. The
* mean is stored in position 0 of the parameters vector. */
virtual double GetMean() const;
/** Does this distribution have a mean? */
virtual bool HasMean() const { return true; }
/** Set the variance of the Gaussian distribution. Defaults
* to 1.0. The variance is stored in position 1 of the parameters
* vector. */
virtual void SetVariance(double);
/** Get the variance of the Gaussian distribution. Defaults to
* 1.0. The variance is stored in position 1 of the parameters vector. */
virtual double GetVariance() const;
/** Does this distribution have a variance? */
virtual bool HasVariance() const { return true; }
/** Static method to evaluate the probability density function (pdf)
* of a standardized (mean zero, unit variance) Gaussian. The static
* method provides optimized access without requiring an instance of
* the class. */
static double PDF(double x);
/** Static method to evaluate the probability density function (pdf)
* of a Gaussian. The parameters of the distribution are passed as a
* parameter vector. The ordering of the parameters is (mean,
* variance). The static method provides optimized access without
* requiring an instance of the class. */
static double PDF(double x, const ParametersType &);
/** Static method to evaluate the probability density function (pdf)
* of a Gaussian. The parameters of the distribution are passed as
* separate values. The static method provides optimized access
* without requiring an instance of the class. */
static double PDF(double x, double mean, double variance);
/** Static method to evaluate the cumulative distribution function
* (cdf) of a standardized (mean zero, unit variance) Gaussian. The
* static method provides optimized access without requiring an
* instance of the class. Accuracy is approximately 10^-8. */
static double CDF(double x);
/** Static method to evaluate the cumulative distribution function
* (cdf) of a Gaussian. The parameters of the distribution are passed
* as a parameter vector. The ordering of the parameters is (mean,
* variance). The static method provides optimized access
* without requiring an instance of the class. */
static double CDF(double x, const ParametersType &);
/** Static method to evaluate the cumulative distribution function
* (cdf) of a Gaussian. The parameters of the distribution are
* passed as separate values. The static method provides optimized access
* without requiring an instance of the class. */
static double CDF(double x, double mean, double variance);
/** Static method to evaluate the inverse cumulative distribution
* function of a standardized (mean zero, unit variance) Gaussian.
* The static method provides optimized access without requiring an
* instance of the class. Parameter p must be between 0.0 and 1.0.
*
* THis implementation was provided by Robert W. Cox from the
* Biophysics Research Institute at the Medical College of
* Wisconsin. This function is based off of a rational polynomial
* approximation to the inverse Gaussian CDF which can be found in
* M. Abramowitz and I.A. Stegun. Handbook of Mathematical Functions
* with Formulas, Graphs, and Mathematical Tables. John Wiley & Sons.
* New York. Equation 26.2.23. pg. 933. 1972.
*
* Since the initial approximation only provides an estimate within
* 4.5 E-4 of the true value, 3 Newton-Raphson interations are used
* to refine the approximation. Accuracy is approximately 10^-8.
*
* Let,
* Q(x) = (1/sqrt(2*pi)) Int_{x}^{infinity} e^{-t^2/2} dt
* = 0.5 * erfc(x/sqrt(2))
*
* Given p, this function computes x such that Q(x) = p, for 0 < p < 1
*
* Note that the Gaussian CDF is defined as
* P(x) = (1/sqrt(2*pi)) Int_{-infinity}{x} e^{-t^2/2} dt
* = 1 - Q(x)
*
* This function has been modified to compute the inverse of P(x) instead
* of Q(x).
*/
static double InverseCDF(double p);
/** Static method to evaluate the inverse cumulative distribution
* function of a Gaussian. The parameters of the distribution are
* passed as a parameter vector. The ordering of the parameters is
* (mean, variance). The static method provides optimized access
* without requiring an instance of the class. Parameter p must be
* between 0.0 and 1.0 */
static double InverseCDF(double p, const ParametersType &);
/** Static method to evaluate the inverse cumulative distribution
* function of a Gaussian. The parameters of the distribution are
* passed as separate values. The static method provides optimized
* access without requiring an instance of the class. Parameter p
* must be between 0.0 and 1.0 */
static double InverseCDF(double p, double mean, double variance);
protected:
GaussianDistribution(void);
virtual ~GaussianDistribution(void) {}
void PrintSelf(std::ostream & os, Indent indent) const;
private:
GaussianDistribution(const Self &); //purposely not implemented
void operator=(const Self &); //purposely not implemented
}; // end of class
} // end of namespace Statistics
} // end namespace itk
#endif
|