This file is indexed.

/usr/include/ITK-4.5/itkGaussianInterpolateImageFunction.hxx is in libinsighttoolkit4-dev 4.5.0-3.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
/*=========================================================================

  Program:   Insight Segmentation & Registration Toolkit
  Module:    $RCSfile: itkGaussianInterpolateImageFunction.hxx,v $
  Language:  C++
  Date:      $Date: $
  Version:   $Revision: $

  Copyright (c) Insight Software Consortium. All rights reserved.
  See ITKCopyright.txt or http://www.itk.org/HTML/Copyright.htm for details.

  Portions of this code are covered under the VTK copyright.
  See VTKCopyright.txt or http://www.kitware.com/VTKCopyright.htm for details.

     This software is distributed WITHOUT ANY WARRANTY; without even
     the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
     PURPOSE.  See the above copyright notices for more information.

=========================================================================*/
#ifndef __itkGaussianInterpolateImageFunction_hxx
#define __itkGaussianInterpolateImageFunction_hxx

#include "itkGaussianInterpolateImageFunction.h"

#include "itkImageRegionConstIteratorWithIndex.h"

namespace itk
{

/**
 * Constructor
 */
template<typename TImageType, typename TCoordRep>
GaussianInterpolateImageFunction<TImageType, TCoordRep>
::GaussianInterpolateImageFunction()
{
  this->m_Alpha = 1.0;
  this->m_Sigma.Fill( 1.0 );
}

/**
 * Standard "PrintSelf" method
 */
template<typename TImageType, typename TCoordRep>
void
GaussianInterpolateImageFunction<TImageType, TCoordRep>
::PrintSelf( std::ostream& os, Indent indent ) const
{
  Superclass::PrintSelf( os, indent );
  os << indent << "Alpha: " << this->m_Alpha << std::endl;
  os << indent << "Sigma: " << this->m_Sigma << std::endl;
}

template<typename TImageType, typename TCoordRep>
void
GaussianInterpolateImageFunction<TImageType, TCoordRep>
::ComputeBoundingBox()
{
  if( !this->GetInputImage() )
    {
    return;
    }

  typename InputImageType::ConstPointer input = this->GetInputImage();
  typename InputImageType::SpacingType spacing = input->GetSpacing();
  typename InputImageType::SizeType size = input->GetBufferedRegion().GetSize();

  for( unsigned int d = 0; d < ImageDimension; d++ )
    {
    this->m_BoundingBoxStart[d] = -0.5;
    this->m_BoundingBoxEnd[d] = static_cast<RealType>( size[d] ) - 0.5;
    this->m_ScalingFactor[d] = 1.0 / ( vnl_math::sqrt2 * this->m_Sigma[d] / spacing[d] );
    this->m_CutoffDistance[d] = this->m_Sigma[d] * this->m_Alpha / spacing[d];
    }
}

template<typename TImageType, typename TCoordRep>
typename GaussianInterpolateImageFunction<TImageType, TCoordRep>
::OutputType
GaussianInterpolateImageFunction<TImageType, TCoordRep>
::EvaluateAtContinuousIndex( const ContinuousIndexType & cindex, OutputType *grad ) const
{
  vnl_vector<RealType> erfArray[ImageDimension];
  vnl_vector<RealType> gerfArray[ImageDimension];

  // Compute the ERF difference arrays
  for( unsigned int d = 0; d < ImageDimension; d++ )
    {
    bool evaluateGradient = false;
    if( grad )
      {
      evaluateGradient = true;
      }
    this->ComputeErrorFunctionArray( d, cindex[d], erfArray[d],
      gerfArray[d], evaluateGradient );
    }

  RealType sum_me = 0.0;
  RealType sum_m = 0.0;
  ArrayType dsum_me;
  ArrayType dsum_m;
  ArrayType dw;

  dsum_m.Fill( 0.0 );
  dsum_me.Fill( 0.0 );
  dw.Fill( 0.0 );

  // Loop over the voxels in the region identified
  ImageRegion<ImageDimension> region;
  for( unsigned int d = 0; d < ImageDimension; d++ )
    {
    int boundingBoxSize = static_cast<int>(
      this->m_BoundingBoxEnd[d] - this->m_BoundingBoxStart[d] + 0.5 );
    int begin = vnl_math_max( 0, static_cast<int>( vcl_floor( cindex[d] -
      this->m_BoundingBoxStart[d] - this->m_CutoffDistance[d] ) ) );
    int end = vnl_math_min( boundingBoxSize, static_cast<int>( vcl_ceil(
      cindex[d] - this->m_BoundingBoxStart[d] + this->m_CutoffDistance[d] ) ) );
    region.SetIndex( d, begin );
    region.SetSize( d, end - begin );
    }

  ImageRegionConstIteratorWithIndex<InputImageType> It(
    this->GetInputImage(), region );
  for( It.GoToBegin(); !It.IsAtEnd(); ++It )
    {
    unsigned int j = It.GetIndex()[0];
    RealType w = erfArray[0][j];
    if( grad )
      {
      dw[0] = gerfArray[0][j];
      for( unsigned int d = 1; d < ImageDimension; d++ )
        {
        dw[d] = erfArray[0][j];
        }
      }
    for( unsigned int d = 1; d < ImageDimension; d++)
      {
      j = It.GetIndex()[d];
      w *= erfArray[d][j];
      if( grad )
        {
        for( unsigned int q = 0; q < ImageDimension; q++ )
          {
          if( d == q )
            {
            dw[q] *= gerfArray[d][j];
            }
          else
            {
            dw[q] *= erfArray[d][j];
            }
          }
        }
      }
    RealType V = It.Get();
    sum_me += V * w;
    sum_m += w;
    if( grad )
      {
      for( unsigned int q = 0; q < ImageDimension; q++ )
        {
        dsum_me[q] += V * dw[q];
        dsum_m[q] += dw[q];
        }
      }
    }
  RealType rc = sum_me / sum_m;

  if( grad )
    {
    for( unsigned int q = 0; q < ImageDimension; q++ )
      {
      grad[q] = ( dsum_me[q] - rc * dsum_m[q] ) / sum_m;
      grad[q] /= -vnl_math::sqrt2 * this->m_Sigma[q];
      }
    }

  return rc;
}

template<typename TImageType, typename TCoordRep>
void
GaussianInterpolateImageFunction<TImageType, TCoordRep>
::ComputeErrorFunctionArray( unsigned int dimension, RealType cindex,
  vnl_vector<RealType> &erfArray, vnl_vector<RealType> &gerfArray,
  bool evaluateGradient ) const
{
  // Determine the range of voxels along the line where to evaluate erf
  int boundingBoxSize = static_cast<int>(
    this->m_BoundingBoxEnd[dimension] - this->m_BoundingBoxStart[dimension] +
    0.5 );
  int begin = vnl_math_max( 0, static_cast<int>( vcl_floor( cindex -
    this->m_BoundingBoxStart[dimension] -
    this->m_CutoffDistance[dimension] ) ) );
  int end = vnl_math_min( boundingBoxSize, static_cast<int>( vcl_ceil( cindex -
    this->m_BoundingBoxStart[dimension] +
    this->m_CutoffDistance[dimension] ) ) );

  erfArray.set_size( boundingBoxSize );
  gerfArray.set_size( boundingBoxSize );

  // Start at the first voxel
  RealType t = ( this->m_BoundingBoxStart[dimension] - cindex +
    static_cast<RealType>( begin ) ) * this->m_ScalingFactor[dimension];
  RealType e_last = vnl_erf( t );
  RealType g_last = 0.0;
  if( evaluateGradient )
    {
    g_last = vnl_math::two_over_sqrtpi * vcl_exp( -vnl_math_sqr( t ) );
    }

  for( int i = begin; i < end; i++ )
    {
    t += this->m_ScalingFactor[dimension];
    RealType e_now = vnl_erf( t );
    erfArray[i] = e_now - e_last;
    if( evaluateGradient )
      {
      RealType g_now = vnl_math::two_over_sqrtpi * vcl_exp( -vnl_math_sqr( t ) );
      gerfArray[i] = g_now - g_last;
      g_last = g_now;
      }
    e_last = e_now;
    }
}

} // namespace itk

#endif