/usr/include/ITK-4.5/itkGaussianInterpolateImageFunction.hxx is in libinsighttoolkit4-dev 4.5.0-3.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 | /*=========================================================================
Program: Insight Segmentation & Registration Toolkit
Module: $RCSfile: itkGaussianInterpolateImageFunction.hxx,v $
Language: C++
Date: $Date: $
Version: $Revision: $
Copyright (c) Insight Software Consortium. All rights reserved.
See ITKCopyright.txt or http://www.itk.org/HTML/Copyright.htm for details.
Portions of this code are covered under the VTK copyright.
See VTKCopyright.txt or http://www.kitware.com/VTKCopyright.htm for details.
This software is distributed WITHOUT ANY WARRANTY; without even
the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
PURPOSE. See the above copyright notices for more information.
=========================================================================*/
#ifndef __itkGaussianInterpolateImageFunction_hxx
#define __itkGaussianInterpolateImageFunction_hxx
#include "itkGaussianInterpolateImageFunction.h"
#include "itkImageRegionConstIteratorWithIndex.h"
namespace itk
{
/**
* Constructor
*/
template<typename TImageType, typename TCoordRep>
GaussianInterpolateImageFunction<TImageType, TCoordRep>
::GaussianInterpolateImageFunction()
{
this->m_Alpha = 1.0;
this->m_Sigma.Fill( 1.0 );
}
/**
* Standard "PrintSelf" method
*/
template<typename TImageType, typename TCoordRep>
void
GaussianInterpolateImageFunction<TImageType, TCoordRep>
::PrintSelf( std::ostream& os, Indent indent ) const
{
Superclass::PrintSelf( os, indent );
os << indent << "Alpha: " << this->m_Alpha << std::endl;
os << indent << "Sigma: " << this->m_Sigma << std::endl;
}
template<typename TImageType, typename TCoordRep>
void
GaussianInterpolateImageFunction<TImageType, TCoordRep>
::ComputeBoundingBox()
{
if( !this->GetInputImage() )
{
return;
}
typename InputImageType::ConstPointer input = this->GetInputImage();
typename InputImageType::SpacingType spacing = input->GetSpacing();
typename InputImageType::SizeType size = input->GetBufferedRegion().GetSize();
for( unsigned int d = 0; d < ImageDimension; d++ )
{
this->m_BoundingBoxStart[d] = -0.5;
this->m_BoundingBoxEnd[d] = static_cast<RealType>( size[d] ) - 0.5;
this->m_ScalingFactor[d] = 1.0 / ( vnl_math::sqrt2 * this->m_Sigma[d] / spacing[d] );
this->m_CutoffDistance[d] = this->m_Sigma[d] * this->m_Alpha / spacing[d];
}
}
template<typename TImageType, typename TCoordRep>
typename GaussianInterpolateImageFunction<TImageType, TCoordRep>
::OutputType
GaussianInterpolateImageFunction<TImageType, TCoordRep>
::EvaluateAtContinuousIndex( const ContinuousIndexType & cindex, OutputType *grad ) const
{
vnl_vector<RealType> erfArray[ImageDimension];
vnl_vector<RealType> gerfArray[ImageDimension];
// Compute the ERF difference arrays
for( unsigned int d = 0; d < ImageDimension; d++ )
{
bool evaluateGradient = false;
if( grad )
{
evaluateGradient = true;
}
this->ComputeErrorFunctionArray( d, cindex[d], erfArray[d],
gerfArray[d], evaluateGradient );
}
RealType sum_me = 0.0;
RealType sum_m = 0.0;
ArrayType dsum_me;
ArrayType dsum_m;
ArrayType dw;
dsum_m.Fill( 0.0 );
dsum_me.Fill( 0.0 );
dw.Fill( 0.0 );
// Loop over the voxels in the region identified
ImageRegion<ImageDimension> region;
for( unsigned int d = 0; d < ImageDimension; d++ )
{
int boundingBoxSize = static_cast<int>(
this->m_BoundingBoxEnd[d] - this->m_BoundingBoxStart[d] + 0.5 );
int begin = vnl_math_max( 0, static_cast<int>( vcl_floor( cindex[d] -
this->m_BoundingBoxStart[d] - this->m_CutoffDistance[d] ) ) );
int end = vnl_math_min( boundingBoxSize, static_cast<int>( vcl_ceil(
cindex[d] - this->m_BoundingBoxStart[d] + this->m_CutoffDistance[d] ) ) );
region.SetIndex( d, begin );
region.SetSize( d, end - begin );
}
ImageRegionConstIteratorWithIndex<InputImageType> It(
this->GetInputImage(), region );
for( It.GoToBegin(); !It.IsAtEnd(); ++It )
{
unsigned int j = It.GetIndex()[0];
RealType w = erfArray[0][j];
if( grad )
{
dw[0] = gerfArray[0][j];
for( unsigned int d = 1; d < ImageDimension; d++ )
{
dw[d] = erfArray[0][j];
}
}
for( unsigned int d = 1; d < ImageDimension; d++)
{
j = It.GetIndex()[d];
w *= erfArray[d][j];
if( grad )
{
for( unsigned int q = 0; q < ImageDimension; q++ )
{
if( d == q )
{
dw[q] *= gerfArray[d][j];
}
else
{
dw[q] *= erfArray[d][j];
}
}
}
}
RealType V = It.Get();
sum_me += V * w;
sum_m += w;
if( grad )
{
for( unsigned int q = 0; q < ImageDimension; q++ )
{
dsum_me[q] += V * dw[q];
dsum_m[q] += dw[q];
}
}
}
RealType rc = sum_me / sum_m;
if( grad )
{
for( unsigned int q = 0; q < ImageDimension; q++ )
{
grad[q] = ( dsum_me[q] - rc * dsum_m[q] ) / sum_m;
grad[q] /= -vnl_math::sqrt2 * this->m_Sigma[q];
}
}
return rc;
}
template<typename TImageType, typename TCoordRep>
void
GaussianInterpolateImageFunction<TImageType, TCoordRep>
::ComputeErrorFunctionArray( unsigned int dimension, RealType cindex,
vnl_vector<RealType> &erfArray, vnl_vector<RealType> &gerfArray,
bool evaluateGradient ) const
{
// Determine the range of voxels along the line where to evaluate erf
int boundingBoxSize = static_cast<int>(
this->m_BoundingBoxEnd[dimension] - this->m_BoundingBoxStart[dimension] +
0.5 );
int begin = vnl_math_max( 0, static_cast<int>( vcl_floor( cindex -
this->m_BoundingBoxStart[dimension] -
this->m_CutoffDistance[dimension] ) ) );
int end = vnl_math_min( boundingBoxSize, static_cast<int>( vcl_ceil( cindex -
this->m_BoundingBoxStart[dimension] +
this->m_CutoffDistance[dimension] ) ) );
erfArray.set_size( boundingBoxSize );
gerfArray.set_size( boundingBoxSize );
// Start at the first voxel
RealType t = ( this->m_BoundingBoxStart[dimension] - cindex +
static_cast<RealType>( begin ) ) * this->m_ScalingFactor[dimension];
RealType e_last = vnl_erf( t );
RealType g_last = 0.0;
if( evaluateGradient )
{
g_last = vnl_math::two_over_sqrtpi * vcl_exp( -vnl_math_sqr( t ) );
}
for( int i = begin; i < end; i++ )
{
t += this->m_ScalingFactor[dimension];
RealType e_now = vnl_erf( t );
erfArray[i] = e_now - e_last;
if( evaluateGradient )
{
RealType g_now = vnl_math::two_over_sqrtpi * vcl_exp( -vnl_math_sqr( t ) );
gerfArray[i] = g_now - g_last;
g_last = g_now;
}
e_last = e_now;
}
}
} // namespace itk
#endif
|