This file is indexed.

/usr/include/ITK-4.5/itkGaussianMixtureModelComponent.h is in libinsighttoolkit4-dev 4.5.0-3.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
/*=========================================================================
 *
 *  Copyright Insight Software Consortium
 *
 *  Licensed under the Apache License, Version 2.0 (the "License");
 *  you may not use this file except in compliance with the License.
 *  You may obtain a copy of the License at
 *
 *         http://www.apache.org/licenses/LICENSE-2.0.txt
 *
 *  Unless required by applicable law or agreed to in writing, software
 *  distributed under the License is distributed on an "AS IS" BASIS,
 *  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 *  See the License for the specific language governing permissions and
 *  limitations under the License.
 *
 *=========================================================================*/
#ifndef __itkGaussianMixtureModelComponent_h
#define __itkGaussianMixtureModelComponent_h

#include "itkMixtureModelComponentBase.h"
#include "itkGaussianMembershipFunction.h"
#include "itkWeightedMeanSampleFilter.h"
#include "itkWeightedCovarianceSampleFilter.h"

namespace itk
{
namespace Statistics
{
/** \class GaussianMixtureModelComponent
 * \brief is a component (derived from MixtureModelComponentBase) for
 * Gaussian class. This class is used in
 * ExpectationMaximizationMixtureModelEstimator.
 *
 * On every iteration of EM estimation, this class's GenerateData
 * method is called to compute the new distribution parameters.
 *
 * <b>Recent API changes:</b>
 * The static const macro to get the length of a measurement vector,
 * \c MeasurementVectorSize  has been removed to allow the length of a measurement
 * vector to be specified at run time. It is now obtained at run time from the
 * sample set as input. Please use the function
 * GetMeasurementVectorSize() to get the length.
 *
 * \sa MixtureModelComponentBase, ExpectationMaximizationMixtureModelEstimator
 * \ingroup ITKStatistics
 */

template< typename TSample >
class GaussianMixtureModelComponent:
  public MixtureModelComponentBase< TSample >
{
public:
  /**Standard class typedefs. */
  typedef GaussianMixtureModelComponent        Self;
  typedef MixtureModelComponentBase< TSample > Superclass;
  typedef SmartPointer< Self >                 Pointer;
  typedef SmartPointer< const Self >           ConstPointer;

  /**Standard Macros */
  itkTypeMacro(GaussianMixtureModelComponent, MixtureModelComponentBase);
  itkNewMacro(Self);

  /** Typedefs from the superclass */
  typedef typename Superclass::MeasurementVectorType     MeasurementVectorType;
  typedef typename Superclass::MeasurementVectorSizeType MeasurementVectorSizeType;
  typedef typename Superclass::MembershipFunctionType    MembershipFunctionType;
  typedef typename Superclass::WeightArrayType           WeightArrayType;
  typedef typename Superclass::ParametersType            ParametersType;

  /** Type of the membership function. Gaussian density function */
  typedef GaussianMembershipFunction< MeasurementVectorType >
  NativeMembershipFunctionType;

  /** Types of the mean and the covariance calculator that will update
   *  this component's distribution parameters */
  typedef WeightedMeanSampleFilter< TSample >       MeanEstimatorType;
  typedef WeightedCovarianceSampleFilter< TSample > CovarianceEstimatorType;

  /** Type of the mean vector */
  typedef typename MeanEstimatorType::OutputType MeanVectorType;

  /** Type of the covariance matrix */
  typedef typename CovarianceEstimatorType::OutputType CovarianceMatrixType;

  /** Sets the input sample */
  void SetSample(const TSample *sample);

  /** Sets the component's distribution parameters. */
  void SetParameters(const ParametersType & parameters);

protected:
  GaussianMixtureModelComponent();
  virtual ~GaussianMixtureModelComponent() {}
  void PrintSelf(std::ostream & os, Indent indent) const;

  /** Returns the sum of squared changes in parameters between
   * iterations */
  double CalculateParametersChange();

  /** Computes the new distribution parameters */
  void GenerateData();

private:
  typename NativeMembershipFunctionType::Pointer m_GaussianMembershipFunction;

  typename MeanEstimatorType::MeasurementVectorType m_Mean;

  typename CovarianceEstimatorType::MatrixType m_Covariance;

  typename MeanEstimatorType::Pointer m_MeanEstimator;

  typename CovarianceEstimatorType::Pointer m_CovarianceEstimator;
};  // end of class
} // end of namespace Statistics
} // end of namespace itk

#ifndef ITK_MANUAL_INSTANTIATION
#include "itkGaussianMixtureModelComponent.hxx"
#endif

#endif