/usr/include/ITK-4.5/itkGaussianOperator.h is in libinsighttoolkit4-dev 4.5.0-3.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 | /*=========================================================================
*
* Copyright Insight Software Consortium
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0.txt
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
*=========================================================================*/
#ifndef __itkGaussianOperator_h
#define __itkGaussianOperator_h
#include "itkNeighborhoodOperator.h"
#include <cmath>
namespace itk
{
/**
* \class GaussianOperator
* \brief A NeighborhoodOperator whose coefficients are a one
* dimensional, discrete Gaussian kernel.
*
* GaussianOperator can be used to perform Gaussian blurring
* by taking its inner product with to a Neighborhood
* (NeighborhooIterator) that is swept across an image region.
* It is a directional operator. N successive applications
* oriented along each dimensional direction will effect separable,
* efficient, N-D Gaussian blurring of an image region.
*
* GaussianOperator takes two parameters:
*
* (1) The floating-point variance of the desired Gaussian function.
*
* (2) The "maximum error" allowed in the discrete Gaussian
* function. "Maximum errror" is defined as the difference between the area
* under the discrete Gaussian curve and the area under the continuous
* Gaussian. Maximum error affects the Gaussian operator size. Care should
* be taken not to make this value too small relative to the variance
* lest the operator size become unreasonably large.
*
* References:
* The Gaussian kernel contained in this operator was described
* by Tony Lindeberg (Discrete Scale-Space Theory and the Scale-Space
* Primal Sketch. Dissertation. Royal Institute of Technology, Stockholm,
* Sweden. May 1991.).
*
* \sa NeighborhoodOperator
* \sa NeighborhoodIterator
* \sa Neighborhood
*
* \ingroup Operators
* \ingroup ITKCommon
*
* \wiki
* \wikiexample{Operators/GaussianOperator,Create a Gaussian kernel}
* \endwiki
*/
template< typename TPixel, unsigned int VDimension = 2,
typename TAllocator = NeighborhoodAllocator< TPixel > >
class GaussianOperator:
public NeighborhoodOperator< TPixel, VDimension, TAllocator >
{
public:
/** Standard class typedefs. */
typedef GaussianOperator Self;
typedef NeighborhoodOperator< TPixel, VDimension, TAllocator > Superclass;
/** Constructor. */
GaussianOperator():m_Variance(1), m_MaximumError(.01), m_MaximumKernelWidth(30) {}
/** Copy constructor */
GaussianOperator(const Self & other):
NeighborhoodOperator< TPixel, VDimension, TAllocator >(other)
{
m_Variance = other.m_Variance;
m_MaximumError = other.m_MaximumError;
m_MaximumKernelWidth = other.m_MaximumKernelWidth;
}
/** Assignment operator */
Self & operator=(const Self & other)
{
if(this != &other)
{
Superclass::operator=(other);
m_Variance = other.m_Variance;
m_MaximumError = other.m_MaximumError;
m_MaximumKernelWidth = other.m_MaximumKernelWidth;
}
return *this;
}
/** Sets the desired variance of the Gaussian kernel. */
void SetVariance(const double & variance)
{
m_Variance = variance;
}
/** Sets the desired maximum error of the gaussian approximation. Maximum
* error is the difference between the area under the discrete Gaussian curve
* and the area under the continuous Gaussian. Maximum error affects the
* Gaussian operator size. The value must be between 0.0 and 1.0. */
void SetMaximumError(const double & max_error)
{
if ( max_error >= 1 || max_error <= 0 )
{
itkExceptionMacro("Maximum Error Must be in the range [ 0.0 , 1.0 ]");
}
m_MaximumError = max_error;
}
/** Returns the variance of the Gaussian (scale) for the operator. */
double GetVariance()
{ return m_Variance; }
/** Returns the maximum error of the gaussian approximation. Maximum error is
* the difference between the area under the discrete Gaussian curve and the
* area under the continuous Gaussian. Maximum error affects the Gaussian
* operator size. */
double GetMaximumError()
{ return m_MaximumError; }
/** Sets a limit for growth of the kernel. Small maximum error values with
* large variances will yield very large kernel sizes. This value can be
* used to truncate a kernel in such instances. A warning will be given on
* truncation of the kernel. */
void SetMaximumKernelWidth(unsigned int n)
{ m_MaximumKernelWidth = n; }
/** Returns the maximum allowed kernel width. */
unsigned int GetMaximumKernelWidth() const
{ return m_MaximumKernelWidth; }
/** Prints some debugging information. */
virtual void PrintSelf(std::ostream & os, Indent i) const
{
os << i << "GaussianOperator { this=" << this
<< ", m_Variance = " << m_Variance
<< ", m_MaximumError = " << m_MaximumError
<< "} " << std::endl;
Superclass::PrintSelf( os, i.GetNextIndent() );
}
protected:
typedef typename Superclass::CoefficientVector CoefficientVector;
public:
/** Returns the value of the modified Bessel function I0(x) at a point x >= 0.
*/
double ModifiedBesselI0(double);
/** Returns the value of the modified Bessel function I1(x) at a point x,
* x real. */
double ModifiedBesselI1(double);
/** Returns the value of the modified Bessel function Ik(x) at a point x>=0,
* where k>=2. */
double ModifiedBesselI(int, double);
protected:
/** Calculates operator coefficients. */
CoefficientVector GenerateCoefficients();
/** Arranges coefficients spatially in the memory buffer. */
void Fill(const CoefficientVector & coeff)
{ this->FillCenteredDirectional(coeff); }
private:
/** Desired variance of the discrete Gaussian function. */
double m_Variance;
/** Difference between the areas under the curves of the continuous and
* discrete Gaussian functions. */
double m_MaximumError;
/** Maximum kernel size allowed. This value is used to truncate a kernel
* that has grown too large. A warning is given when the specified maximum
* error causes the kernel to exceed this size. */
unsigned int m_MaximumKernelWidth;
/** For compatibility with itkWarningMacro */
const char * GetNameOfClass()
{ return "itkGaussianOperator"; }
};
} // namespace itk
#ifndef ITK_MANUAL_INSTANTIATION
#include "itkGaussianOperator.hxx"
#endif
#endif
|