This file is indexed.

/usr/include/ITK-4.5/itkGaussianSpatialObject.hxx is in libinsighttoolkit4-dev 4.5.0-3.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
/*=========================================================================
 *
 *  Copyright Insight Software Consortium
 *
 *  Licensed under the Apache License, Version 2.0 (the "License");
 *  you may not use this file except in compliance with the License.
 *  You may obtain a copy of the License at
 *
 *         http://www.apache.org/licenses/LICENSE-2.0.txt
 *
 *  Unless required by applicable law or agreed to in writing, software
 *  distributed under the License is distributed on an "AS IS" BASIS,
 *  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 *  See the License for the specific language governing permissions and
 *  limitations under the License.
 *
 *=========================================================================*/
#ifndef __itkGaussianSpatialObject_hxx
#define __itkGaussianSpatialObject_hxx

#include <cmath>
#include "itkGaussianSpatialObject.h"

namespace itk
{
/** Constructor */
template< unsigned int TDimension >
GaussianSpatialObject< TDimension >
::GaussianSpatialObject()
{
  this->SetTypeName("GaussianSpatialObject");
  this->SetDimension(TDimension);
  m_Radius = 1.0;
  m_Sigma = 1.0;
  m_Maximum = 1.0;
}

/** Destructor */
template< unsigned int TDimension >
GaussianSpatialObject< TDimension >
::~GaussianSpatialObject()
{}

/** The z-score is the root mean square of the z-scores along
 *  each principal axis.   */
template< unsigned int TDimension >
typename GaussianSpatialObject< TDimension >::ScalarType
GaussianSpatialObject< TDimension >
::SquaredZScore(const PointType & point) const
{
  if ( !this->SetInternalInverseTransformToWorldToIndexTransform() )
    {
    return 0;
    }

  PointType transformedPoint =
    this->GetInternalInverseTransform()->TransformPoint(point);

  ScalarType r = 0;
  for ( unsigned int i = 0; i < TDimension; i++ )
    {
    r += transformedPoint[i] * transformedPoint[i];
    }
  return r / ( m_Sigma * m_Sigma );
}

/** Test whether a point is inside or outside the object
 *  For computational speed purposes, it is faster if the method does not
 *  check the name of the class and the current depth */
template< unsigned int TDimension >
bool
GaussianSpatialObject< TDimension >
::IsInside(const PointType & point) const
{
  if ( m_Radius < vnl_math::eps )
    {
    return false;
    }

  this->ComputeLocalBoundingBox();
  if ( !this->GetBounds()->IsInside(point) )
    {
    return false;
    }

  if ( !this->SetInternalInverseTransformToWorldToIndexTransform() )
    {
    return false;
    }

  PointType transformedPoint =
    this->GetInternalInverseTransform()->TransformPoint(point);

  double r = 0;
  for ( unsigned int i = 0; i < TDimension; i++ )
    {
    r += transformedPoint[i] * transformedPoint[i];
    }

  r /= ( m_Radius * m_Radius );

  if ( r < 1.0 )
    {
    return true;
    }

  return false;
}

/** Test if the given point is inside the boundary of the spatial
 * object */
template< unsigned int TDimension >
bool
GaussianSpatialObject< TDimension >
::IsInside(const PointType & point, unsigned int depth, char *name) const
{
  itkDebugMacro("Checking the point [" << point
                                       << "] is inside the GaussianSpatialObject");

  if ( name == NULL )
    {
    if ( IsInside(point) )
      {
      return true;
      }
    }
  else if ( strstr(typeid( Self ).name(), name) )
    {
    if ( IsInside(point) )
      {
      return true;
      }
    }

  return Superclass::IsInside(point, depth, name);
}

/** Compute the bounds of the Gaussian (as determined by the
 *  specified radius).  */
template< unsigned int TDimension >
bool
GaussianSpatialObject< TDimension >
::ComputeLocalBoundingBox() const
{
  if ( this->GetBoundingBoxChildrenName().empty()
       || strstr( typeid( Self ).name(),
                  this->GetBoundingBoxChildrenName().c_str() ) )
    {
    // we need to set the minimum and maximum of the bounding box
    // the center is always inside the bounding box.
    PointType center;
    center.Fill(0);
    center = this->GetIndexToWorldTransform()->TransformPoint(center);
    const_cast< BoundingBoxType * >( this->GetBounds() )->SetMinimum(center);
    const_cast< BoundingBoxType * >( this->GetBounds() )->SetMaximum(center);

    // First we compute the bounding box in the index space
    typename BoundingBoxType::Pointer bb = BoundingBoxType::New();

    PointType    pntMin;
    PointType    pntMax;
    unsigned int i;
    for ( i = 0; i < TDimension; i++ )
      {
      pntMin[i] = -m_Radius;
      pntMax[i] = m_Radius;
      }

    bb->SetMinimum(pntMin);
    bb->SetMaximum(pntMax);

    bb->ComputeBoundingBox();

    typedef typename BoundingBoxType::PointsContainer PointsContainer;
    const PointsContainer *corners = bb->GetCorners();
    typename BoundingBoxType::PointsContainer::const_iterator
    it = corners->begin();
    while ( it != corners->end() )
      {
      PointType pnt = this->GetIndexToWorldTransform()->TransformPoint(*it);
      const_cast< BoundingBoxType * >( this->GetBounds() )->ConsiderPoint(pnt);
      ++it;
      }
    }
  return true;
}

/** Returns if the ellipse os evaluable at one point */
template< unsigned int TDimension >
bool
GaussianSpatialObject< TDimension >
::IsEvaluableAt(const PointType & point,
                unsigned int depth, char *name) const
{
  itkDebugMacro("Checking if the ellipse is evaluable at " << point);
  return IsInside(point, depth, name);
}

/** Returns the value at one point */
template< unsigned int TDimension >
bool
GaussianSpatialObject< TDimension >
::ValueAt(const PointType & point, ScalarType & value, unsigned int depth,
          char *name) const
{
  itkDebugMacro("Getting the value of the ellipse at " << point);
  if ( IsInside(point, 0, name) )
    {
    const double zsq = this->SquaredZScore(point);
    value = m_Maximum * (ScalarType)vcl_exp(-zsq / 2.0);
    return true;
    }
  else if ( Superclass::IsEvaluableAt(point, depth, name) )
    {
    Superclass::ValueAt(point, value, depth, name);
    return true;
    }
  value = this->GetDefaultOutsideValue();
  return false;
}

/** Returns the sigma=m_Radius level set of the Gaussian function, as an
 * EllipseSpatialObject.  */
template< unsigned int TDimension >
typename EllipseSpatialObject< TDimension >::Pointer
GaussianSpatialObject< TDimension >
::GetEllipsoid() const
{
  typedef itk::EllipseSpatialObject< TDimension > EllipseType;
  typename EllipseType::Pointer ellipse = EllipseType::New();

  ellipse->SetRadius(m_Radius);

  ellipse->GetIndexToObjectTransform()->SetCenter(
    this->GetIndexToObjectTransform()->GetCenter() );
  ellipse->GetIndexToObjectTransform()->SetMatrix(
    this->GetIndexToObjectTransform()->GetMatrix() );
  ellipse->GetIndexToObjectTransform()->SetOffset(
    this->GetIndexToObjectTransform()->GetOffset() );

  ellipse->GetModifiableObjectToWorldTransform()->SetCenter(
    this->GetObjectToWorldTransform()->GetCenter() );
  ellipse->GetModifiableObjectToWorldTransform()->SetMatrix(
    this->GetObjectToWorldTransform()->GetMatrix() );
  ellipse->GetModifiableObjectToWorldTransform()->SetOffset(
    this->GetObjectToWorldTransform()->GetOffset() );

  ellipse->GetModifiableIndexToWorldTransform()->SetCenter(
    this->GetIndexToWorldTransform()->GetCenter() );
  ellipse->GetModifiableIndexToWorldTransform()->SetMatrix(
    this->GetIndexToWorldTransform()->GetMatrix() );
  ellipse->GetModifiableIndexToWorldTransform()->SetOffset(
    this->GetIndexToWorldTransform()->GetOffset() );

  return ellipse;
}

/** Print Self function */
template< unsigned int TDimension >
void
GaussianSpatialObject< TDimension >
::PrintSelf(std::ostream & os, Indent indent) const
{
  Superclass::PrintSelf(os, indent);
  os << "Maximum: " << m_Maximum << std::endl;
  os << "Radius: " << m_Radius << std::endl;
  os << "Sigma: " << m_Sigma << std::endl;
}
} // end namespace itk

#endif