/usr/include/ITK-4.5/itkGradientDescentLineSearchOptimizerv4.h is in libinsighttoolkit4-dev 4.5.0-3.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 | /*=========================================================================
*
* Copyright Insight Software Consortium
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0.txt
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
*=========================================================================*/
#ifndef __itkGradientDescentLineSearchOptimizerv4_h
#define __itkGradientDescentLineSearchOptimizerv4_h
#include "itkGradientDescentOptimizerv4.h"
#include "itkOptimizerParameterScalesEstimator.h"
#include "itkWindowConvergenceMonitoringFunction.h"
namespace itk
{
/** \class GradientDescentLineSearchOptimizerv4Template
* \brief Gradient descent optimizer with a golden section line search.
*
* GradientDescentLineSearchOptimizer implements a simple gradient descent optimizer
* that is followed by a line search to find the best value for the learning rate.
* At each iteration the current position is updated according to
*
* \f[
* p_{n+1} = p_n
* + \mbox{learningRateByGoldenSectionLineSearch}
\, \frac{\partial f(p_n) }{\partial p_n}
* \f]
*
* Options are identical to the superclass's except for:
*
* options Epsilon, LowerLimit and UpperLimit that will guide
* a golden section line search to find the optimal gradient update
* within the range :
*
* [ learningRate * LowerLimit , learningRate * UpperLimit ]
*
* where Epsilon sets the resolution of the search. Smaller values
* lead to additional computation time but better localization of
* the minimum.
*
* By default, this optimizer will return the best value and associated
* parameters that were calculated during the optimization.
* See SetReturnBestParametersAndValue().
*
* \ingroup ITKOptimizersv4
*/
template<typename TInternalComputationValueType>
class GradientDescentLineSearchOptimizerv4Template
: public GradientDescentOptimizerv4Template<TInternalComputationValueType>
{
public:
/** Standard class typedefs. */
typedef GradientDescentLineSearchOptimizerv4Template Self;
typedef GradientDescentOptimizerv4Template<TInternalComputationValueType> Superclass;
typedef SmartPointer< Self > Pointer;
typedef SmartPointer< const Self > ConstPointer;
/** Run-time type information (and related methods). */
itkTypeMacro(GradientDescentLineSearchOptimizerv4Template, Superclass);
/** New macro for creation of through a Smart Pointer */
itkNewMacro(Self);
/** It should be possible to derive the internal computation type from the class object. */
typedef TInternalComputationValueType InternalComputationValueType;
/** Derivative type */
typedef typename Superclass::DerivativeType DerivativeType;
/** Metric type over which this class is templated */
typedef typename Superclass::MeasureType MeasureType;
typedef typename Superclass::ParametersType ParametersType;
/** Type for the convergence checker */
typedef itk::Function::WindowConvergenceMonitoringFunction<TInternalComputationValueType> ConvergenceMonitoringType;
/** The epsilon determines the accuracy of the line search
* i.e. the energy alteration that is considered convergent.
*/
itkSetMacro( Epsilon , TInternalComputationValueType );
itkGetMacro( Epsilon , TInternalComputationValueType );
/** The upper and lower limit below determine the range
* of values over which the learning rate can be adjusted
* by the golden section line search. The update can then
* occur in the range from the smallest change given by :
* NewParams = OldParams + LowerLimit * gradient
* to the largest change given by :
* NewParams = OldParams + UpperLimit * gradient
* Reasonable values might be 0 and 2.
*/
itkSetMacro( LowerLimit , TInternalComputationValueType );
itkGetMacro( LowerLimit , TInternalComputationValueType );
itkSetMacro( UpperLimit , TInternalComputationValueType );
itkGetMacro( UpperLimit , TInternalComputationValueType );
itkSetMacro( MaximumLineSearchIterations , unsigned int );
itkGetMacro( MaximumLineSearchIterations , unsigned int );
protected:
/** Advance one Step following the gradient direction.
* Includes transform update. */
virtual void AdvanceOneStep(void);
/** Default constructor */
GradientDescentLineSearchOptimizerv4Template();
/** Destructor */
virtual ~GradientDescentLineSearchOptimizerv4Template();
virtual void PrintSelf( std::ostream & os, Indent indent ) const;
TInternalComputationValueType GoldenSectionSearch( TInternalComputationValueType a, TInternalComputationValueType b, TInternalComputationValueType c );
TInternalComputationValueType m_LowerLimit;
TInternalComputationValueType m_UpperLimit;
TInternalComputationValueType m_Phi;
TInternalComputationValueType m_Resphi;
TInternalComputationValueType m_Epsilon;
/** Controls the maximum recursion depth for the golden section search */
unsigned int m_MaximumLineSearchIterations;
/** Counts the recursion depth for the golden section search */
unsigned int m_LineSearchIterations;
private:
GradientDescentLineSearchOptimizerv4Template( const Self & ); //purposely not implemented
void operator=( const Self& ); //purposely not implemented
};
/** This helps to meet backward compatibility */
typedef GradientDescentLineSearchOptimizerv4Template<double> GradientDescentLineSearchOptimizerv4;
} // end namespace itk
#ifndef ITK_MANUAL_INSTANTIATION
#include "itkGradientDescentLineSearchOptimizerv4.hxx"
#endif
#endif
|