/usr/include/ITK-4.5/itkGradientDescentOptimizer.h is in libinsighttoolkit4-dev 4.5.0-3.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 | /*=========================================================================
*
* Copyright Insight Software Consortium
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0.txt
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
*=========================================================================*/
#ifndef __itkGradientDescentOptimizer_h
#define __itkGradientDescentOptimizer_h
#include "itkIntTypes.h"
#include "itkSingleValuedNonLinearOptimizer.h"
#include <string>
namespace itk
{
/** \class GradientDescentOptimizer
* \brief Implement a gradient descent optimizer
*
* GradientDescentOptimizer implements a simple gradient descent optimizer.
* At each iteration the current position is updated according to
*
* \f[
* p_{n+1} = p_n
* + \mbox{learningRate}
\, \frac{\partial f(p_n) }{\partial p_n}
* \f]
*
* The learning rate is a fixed scalar defined via SetLearningRate().
* The optimizer steps through a user defined number of iterations;
* no convergence checking is done.
*
* Additionally, user can scale each component,
* \f$ \partial f / \partial p \f$,
* by setting a scaling vector using method SetScale().
*
* \sa RegularStepGradientDescentOptimizer
*
* \ingroup Numerics Optimizers
* \ingroup ITKOptimizers
*/
class GradientDescentOptimizer:
public SingleValuedNonLinearOptimizer
{
public:
/** Standard class typedefs. */
typedef GradientDescentOptimizer Self;
typedef SingleValuedNonLinearOptimizer Superclass;
typedef SmartPointer< Self > Pointer;
typedef SmartPointer< const Self > ConstPointer;
/** Method for creation through the object factory. */
itkNewMacro(Self);
/** Run-time type information (and related methods). */
itkTypeMacro(GradientDescentOptimizer, SingleValuedNonLinearOptimizer);
/** Codes of stopping conditions */
typedef enum {
MaximumNumberOfIterations,
MetricError
} StopConditionType;
/** Methods to configure the cost function. */
itkGetConstReferenceMacro(Maximize, bool);
itkSetMacro(Maximize, bool);
itkBooleanMacro(Maximize);
bool GetMinimize() const
{ return !m_Maximize; }
void SetMinimize(bool v)
{ this->SetMaximize(!v); }
void MinimizeOn()
{ this->MaximizeOff(); }
void MinimizeOff()
{ this->MaximizeOn(); }
/** Advance one step following the gradient direction. */
virtual void AdvanceOneStep(void);
/** Start optimization. */
void StartOptimization(void);
/** Resume previously stopped optimization with current parameters
* \sa StopOptimization. */
void ResumeOptimization(void);
/** Stop optimization.
* \sa ResumeOptimization */
void StopOptimization(void);
/** Set the learning rate. */
itkSetMacro(LearningRate, double);
/** Get the learning rate. */
itkGetConstReferenceMacro(LearningRate, double);
/** Set the number of iterations. */
itkSetMacro(NumberOfIterations, SizeValueType);
/** Get the number of iterations. */
itkGetConstReferenceMacro(NumberOfIterations, SizeValueType);
/** Get the current iteration number. */
itkGetConstMacro(CurrentIteration, SizeValueType);
/** Get the current value. */
itkGetConstReferenceMacro(Value, double);
/** Get Stop condition. */
itkGetConstReferenceMacro(StopCondition, StopConditionType);
const std::string GetStopConditionDescription() const;
/** Get Gradient condition. */
itkGetConstReferenceMacro(Gradient, DerivativeType);
protected:
GradientDescentOptimizer();
virtual ~GradientDescentOptimizer() {}
void PrintSelf(std::ostream & os, Indent indent) const;
// made protected so subclass can access
DerivativeType m_Gradient;
bool m_Maximize;
double m_LearningRate;
private:
GradientDescentOptimizer(const Self &); //purposely not implemented
void operator=(const Self &); //purposely not implemented
bool m_Stop;
double m_Value;
StopConditionType m_StopCondition;
SizeValueType m_NumberOfIterations;
SizeValueType m_CurrentIteration;
std::ostringstream m_StopConditionDescription;
};
} // end namespace itk
#endif
|