This file is indexed.

/usr/include/ITK-4.5/itkGradientNDAnisotropicDiffusionFunction.hxx is in libinsighttoolkit4-dev 4.5.0-3.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
/*=========================================================================
 *
 *  Copyright Insight Software Consortium
 *
 *  Licensed under the Apache License, Version 2.0 (the "License");
 *  you may not use this file except in compliance with the License.
 *  You may obtain a copy of the License at
 *
 *         http://www.apache.org/licenses/LICENSE-2.0.txt
 *
 *  Unless required by applicable law or agreed to in writing, software
 *  distributed under the License is distributed on an "AS IS" BASIS,
 *  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 *  See the License for the specific language governing permissions and
 *  limitations under the License.
 *
 *=========================================================================*/
#ifndef __itkGradientNDAnisotropicDiffusionFunction_hxx
#define __itkGradientNDAnisotropicDiffusionFunction_hxx

#include "itkNumericTraits.h"
#include "itkGradientNDAnisotropicDiffusionFunction.h"

namespace itk
{
template< typename TImage >
double GradientNDAnisotropicDiffusionFunction< TImage >
::m_MIN_NORM = 1.0e-10;

template< typename TImage >
GradientNDAnisotropicDiffusionFunction< TImage >
::GradientNDAnisotropicDiffusionFunction()
{
  unsigned int i, j;
  RadiusType   r;

  for ( i = 0; i < ImageDimension; ++i )
    {
    r[i] = 1;
    }
  this->SetRadius(r);

  // Dummy neighborhood used to set up the slices.
  Neighborhood< PixelType, ImageDimension > it;
  it.SetRadius(r);

  // Slice the neighborhood
  m_Center =  it.Size() / 2;

  for ( i = 0; i < ImageDimension; ++i )
    {
    m_Stride[i] = it.GetStride(i);
    }

  for ( i = 0; i < ImageDimension; ++i )
    {
    x_slice[i]  = std::slice(m_Center - m_Stride[i], 3, m_Stride[i]);
    }

  for ( i = 0; i < ImageDimension; ++i )
    {
    for ( j = 0; j < ImageDimension; ++j )
      {
      // For taking derivatives in the i direction that are offset one
      // pixel in the j direction.
      xa_slice[i][j] =
        std::slice( ( m_Center + m_Stride[j] ) - m_Stride[i], 3, m_Stride[i] );
      xd_slice[i][j] =
        std::slice( ( m_Center - m_Stride[j] ) - m_Stride[i], 3, m_Stride[i] );
      }
    }

  // Allocate the derivative operator.
  dx_op.SetDirection(0);  // Not relevant, will be applied in a slice-based
                          // fashion.
  dx_op.SetOrder(1);
  dx_op.CreateDirectional();
}

template< typename TImage >
typename GradientNDAnisotropicDiffusionFunction< TImage >::PixelType
GradientNDAnisotropicDiffusionFunction< TImage >
::ComputeUpdate(const NeighborhoodType & it, void *,
                const FloatOffsetType &)
{
  unsigned int i, j;

  double accum;
  double accum_d;
  double Cx;
  double Cxd;

  // PixelType is scalar in this context
  PixelRealType delta;
  PixelRealType dx_forward;
  PixelRealType dx_backward;
  PixelRealType dx[ImageDimension];
  PixelRealType dx_aug;
  PixelRealType dx_dim;

  delta = NumericTraits< PixelRealType >::Zero;

  // Calculate the centralized derivatives for each dimension.
  for ( i = 0; i < ImageDimension; i++ )
    {
    dx[i]  =  ( it.GetPixel(m_Center + m_Stride[i]) - it.GetPixel(m_Center - m_Stride[i]) ) / 2.0f;
    dx[i] *= this->m_ScaleCoefficients[i];
    }

  for ( i = 0; i < ImageDimension; i++ )
    {
    // ``Half'' directional derivatives
    dx_forward = it.GetPixel(m_Center + m_Stride[i])
                 - it.GetPixel(m_Center);
    dx_forward *= this->m_ScaleCoefficients[i];
    dx_backward =  it.GetPixel(m_Center)
                  - it.GetPixel(m_Center - m_Stride[i]);
    dx_backward *= this->m_ScaleCoefficients[i];

    // Calculate the conductance terms.  Conductance varies with each
    // dimension because the gradient magnitude approximation is different
    // along each  dimension.
    accum   = 0.0;
    accum_d = 0.0;
    for ( j = 0; j < ImageDimension; j++ )
      {
      if ( j != i )
        {
        dx_aug = ( it.GetPixel(m_Center + m_Stride[i] + m_Stride[j])
                   - it.GetPixel(m_Center + m_Stride[i] - m_Stride[j]) ) / 2.0f;
        dx_aug *= this->m_ScaleCoefficients[j];
        dx_dim = ( it.GetPixel(m_Center - m_Stride[i] + m_Stride[j])
                   - it.GetPixel(m_Center - m_Stride[i] - m_Stride[j]) ) / 2.0f;
        dx_dim *= this->m_ScaleCoefficients[j];
        accum += 0.25f * vnl_math_sqr(dx[j] + dx_aug);
        accum_d += 0.25f * vnl_math_sqr(dx[j] + dx_dim);
        }
      }

    if ( m_K == 0.0 )
      {
      Cx = 0.0;
      Cxd = 0.0;
      }
    else
      {
      Cx = vcl_exp( ( vnl_math_sqr(dx_forward) + accum )  / m_K );
      Cxd = vcl_exp( ( vnl_math_sqr(dx_backward) + accum_d ) / m_K );
      }

    // Conductance modified first order derivatives.
    dx_forward  = dx_forward * Cx;
    dx_backward = dx_backward * Cxd;

    // Conductance modified second order derivative.
    delta += dx_forward - dx_backward;
    }

  return static_cast< PixelType >( delta );
}
} // end namespace itk

#endif