This file is indexed.

/usr/include/ITK-4.5/itkHuangThresholdCalculator.hxx is in libinsighttoolkit4-dev 4.5.0-3.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
/*=========================================================================
 *
 *  Copyright Insight Software Consortium
 *
 *  Licensed under the Apache License, Version 2.0 (the "License");
 *  you may not use this file except in compliance with the License.
 *  You may obtain a copy of the License at
 *
 *         http://www.apache.org/licenses/LICENSE-2.0.txt
 *
 *  Unless required by applicable law or agreed to in writing, software
 *  distributed under the License is distributed on an "AS IS" BASIS,
 *  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 *  See the License for the specific language governing permissions and
 *  limitations under the License.
 *
 *=========================================================================*/

#ifndef __itkHuangThresholdCalculator_hxx
#define __itkHuangThresholdCalculator_hxx

#include "itkHuangThresholdCalculator.h"
#include "itkMath.h"
#include "itkProgressReporter.h"
#include "vnl/vnl_math.h"

namespace itk
{

/*
 * Compute the Huang's threshold
 */
template<typename THistogram, typename TOutput>
void
HuangThresholdCalculator<THistogram, TOutput>
::GenerateData(void)
{
  const HistogramType * histogram = this->GetInput();

  TotalAbsoluteFrequencyType total = histogram->GetTotalFrequency();
  if( total == NumericTraits< TotalAbsoluteFrequencyType >::Zero )
    {
    itkExceptionMacro(<< "Histogram is empty");
    }
  m_Size = histogram->GetSize( 0 );
  ProgressReporter progress( this, 0, m_Size );
  if( m_Size == 1 )
    {
    this->GetOutput()->Set( static_cast<OutputType>(histogram->GetMeasurement( 0, 0 )) );
    return;
    }

  // find first and last non-empty bin - could replace with stl
  m_FirstBin = 0;
  while( m_FirstBin < m_Size && histogram->GetFrequency(m_FirstBin, 0) == 0 )
    {
    ++m_FirstBin;
    }
  if( m_FirstBin == m_Size )
    {
    itkWarningMacro(<< "No data in histogram");
    return;
    }
  m_LastBin = m_Size - 1;
  while( m_LastBin > m_FirstBin && histogram->GetFrequency(m_LastBin, 0) == 0)
    {
    --m_LastBin;
    }

  // calculate the cumulative density and the weighted cumulative density
  std::vector<double> S(m_LastBin+1, 0.0);
  std::vector<double> W(m_LastBin+1, 0.0);

  S[0] = histogram->GetFrequency(0, 0);

  for( InstanceIdentifier i = vnl_math_max( NumericTraits< InstanceIdentifier >::One, m_FirstBin );
       i <= m_LastBin; i++ )
    {
    S[i] = S[i - 1] + histogram->GetFrequency(i, 0);
    W[i] = W[i - 1] + histogram->GetMeasurement(i, 0) * histogram->GetFrequency(i, 0);
    }

  // precalculate the summands of the entropy given the absolute difference x - mu (integral)
  double C = static_cast< double >( m_LastBin - m_FirstBin );
  std::vector<double> Smu(m_LastBin + 1 - m_FirstBin, 0);

  for( size_t i = 1; i < Smu.size(); i++)
    {
    double mu = 1. / ( 1. + static_cast< double >( i ) / C );
    Smu[i] = -mu * vcl_log( mu ) - (1. - mu) * vcl_log( 1. - mu );
    }

  // calculate the threshold
  // need to take care - W[0] is zero, which means that mu=0 first
  // time round. This may be below the range of values in the
  // histogram, especially if masking is in place.
  // Also need to be careful at the end. The Java implementation from
  // ImageJ loops from first to last, not < last. This makes the
  // calculation of mu a bit silly :
  // mu = Math::Round<int>((W[last] - W[threshold]) / (S[last] - S[threshold]));
  // which is going to produce 0/0. Hence the loop bounds have been
  // changed. I think there is a bug in the ImageJ implementation, but
  // perhaps it is hidden by whatever java does when rounding a NaN to integer.

  InstanceIdentifier bestThreshold = 0;
  double bestEntropy = itk::NumericTraits<double>::max();

  for( InstanceIdentifier threshold = m_FirstBin;
       threshold < m_LastBin; threshold++ )
    {
    double entropy = 0.;
    MeasurementType mu = Math::Round< MeasurementType >(W[threshold] / S[threshold]);

    typename HistogramType::MeasurementVectorType v(1);
    v[0]=mu;

    typename HistogramType::IndexType       muFullIdx;
    typename HistogramType::IndexValueType  muIdx;

    if (histogram->GetIndex(v, muFullIdx))
      {
      muIdx = muFullIdx[0];
      for( InstanceIdentifier i = m_FirstBin; i <= threshold; i++ )
        {
        InstanceIdentifier diff = static_cast< InstanceIdentifier >( vcl_abs(static_cast< typename HistogramType::IndexValueType >( i ) - muIdx) );
        itkAssertInDebugAndIgnoreInReleaseMacro( diff < Smu.size() );

        entropy += Smu[ diff ] * histogram->GetFrequency(i, 0);
        }
      mu = Math::Round< MeasurementType >((W[m_LastBin] - W[threshold]) / (S[m_LastBin] - S[threshold]));
      v[0]=mu;

      bool status = histogram->GetIndex(v, muFullIdx);
      if (!status)
        {
        itkExceptionMacro("Failed looking up histogram");
        }
      muIdx = muFullIdx[0];
      for( InstanceIdentifier i = threshold + 1; i <= m_LastBin; i++ )
        {
        InstanceIdentifier diff = static_cast< InstanceIdentifier >( vcl_abs(static_cast< typename HistogramType::IndexValueType >( i ) - muIdx) );
        entropy += Smu[ diff ] * histogram->GetFrequency(i, 0);
        }
      if (bestEntropy > entropy)
        {
        bestEntropy = entropy;
        bestThreshold = threshold;
        }
      }
    }

  this->GetOutput()->Set( static_cast<OutputType>( histogram->GetMeasurement( bestThreshold, 0 ) ) );
}

} // end namespace itk

#endif