/usr/include/ITK-4.5/itkHuangThresholdCalculator.hxx is in libinsighttoolkit4-dev 4.5.0-3.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 | /*=========================================================================
*
* Copyright Insight Software Consortium
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0.txt
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
*=========================================================================*/
#ifndef __itkHuangThresholdCalculator_hxx
#define __itkHuangThresholdCalculator_hxx
#include "itkHuangThresholdCalculator.h"
#include "itkMath.h"
#include "itkProgressReporter.h"
#include "vnl/vnl_math.h"
namespace itk
{
/*
* Compute the Huang's threshold
*/
template<typename THistogram, typename TOutput>
void
HuangThresholdCalculator<THistogram, TOutput>
::GenerateData(void)
{
const HistogramType * histogram = this->GetInput();
TotalAbsoluteFrequencyType total = histogram->GetTotalFrequency();
if( total == NumericTraits< TotalAbsoluteFrequencyType >::Zero )
{
itkExceptionMacro(<< "Histogram is empty");
}
m_Size = histogram->GetSize( 0 );
ProgressReporter progress( this, 0, m_Size );
if( m_Size == 1 )
{
this->GetOutput()->Set( static_cast<OutputType>(histogram->GetMeasurement( 0, 0 )) );
return;
}
// find first and last non-empty bin - could replace with stl
m_FirstBin = 0;
while( m_FirstBin < m_Size && histogram->GetFrequency(m_FirstBin, 0) == 0 )
{
++m_FirstBin;
}
if( m_FirstBin == m_Size )
{
itkWarningMacro(<< "No data in histogram");
return;
}
m_LastBin = m_Size - 1;
while( m_LastBin > m_FirstBin && histogram->GetFrequency(m_LastBin, 0) == 0)
{
--m_LastBin;
}
// calculate the cumulative density and the weighted cumulative density
std::vector<double> S(m_LastBin+1, 0.0);
std::vector<double> W(m_LastBin+1, 0.0);
S[0] = histogram->GetFrequency(0, 0);
for( InstanceIdentifier i = vnl_math_max( NumericTraits< InstanceIdentifier >::One, m_FirstBin );
i <= m_LastBin; i++ )
{
S[i] = S[i - 1] + histogram->GetFrequency(i, 0);
W[i] = W[i - 1] + histogram->GetMeasurement(i, 0) * histogram->GetFrequency(i, 0);
}
// precalculate the summands of the entropy given the absolute difference x - mu (integral)
double C = static_cast< double >( m_LastBin - m_FirstBin );
std::vector<double> Smu(m_LastBin + 1 - m_FirstBin, 0);
for( size_t i = 1; i < Smu.size(); i++)
{
double mu = 1. / ( 1. + static_cast< double >( i ) / C );
Smu[i] = -mu * vcl_log( mu ) - (1. - mu) * vcl_log( 1. - mu );
}
// calculate the threshold
// need to take care - W[0] is zero, which means that mu=0 first
// time round. This may be below the range of values in the
// histogram, especially if masking is in place.
// Also need to be careful at the end. The Java implementation from
// ImageJ loops from first to last, not < last. This makes the
// calculation of mu a bit silly :
// mu = Math::Round<int>((W[last] - W[threshold]) / (S[last] - S[threshold]));
// which is going to produce 0/0. Hence the loop bounds have been
// changed. I think there is a bug in the ImageJ implementation, but
// perhaps it is hidden by whatever java does when rounding a NaN to integer.
InstanceIdentifier bestThreshold = 0;
double bestEntropy = itk::NumericTraits<double>::max();
for( InstanceIdentifier threshold = m_FirstBin;
threshold < m_LastBin; threshold++ )
{
double entropy = 0.;
MeasurementType mu = Math::Round< MeasurementType >(W[threshold] / S[threshold]);
typename HistogramType::MeasurementVectorType v(1);
v[0]=mu;
typename HistogramType::IndexType muFullIdx;
typename HistogramType::IndexValueType muIdx;
if (histogram->GetIndex(v, muFullIdx))
{
muIdx = muFullIdx[0];
for( InstanceIdentifier i = m_FirstBin; i <= threshold; i++ )
{
InstanceIdentifier diff = static_cast< InstanceIdentifier >( vcl_abs(static_cast< typename HistogramType::IndexValueType >( i ) - muIdx) );
itkAssertInDebugAndIgnoreInReleaseMacro( diff < Smu.size() );
entropy += Smu[ diff ] * histogram->GetFrequency(i, 0);
}
mu = Math::Round< MeasurementType >((W[m_LastBin] - W[threshold]) / (S[m_LastBin] - S[threshold]));
v[0]=mu;
bool status = histogram->GetIndex(v, muFullIdx);
if (!status)
{
itkExceptionMacro("Failed looking up histogram");
}
muIdx = muFullIdx[0];
for( InstanceIdentifier i = threshold + 1; i <= m_LastBin; i++ )
{
InstanceIdentifier diff = static_cast< InstanceIdentifier >( vcl_abs(static_cast< typename HistogramType::IndexValueType >( i ) - muIdx) );
entropy += Smu[ diff ] * histogram->GetFrequency(i, 0);
}
if (bestEntropy > entropy)
{
bestEntropy = entropy;
bestThreshold = threshold;
}
}
}
this->GetOutput()->Set( static_cast<OutputType>( histogram->GetMeasurement( bestThreshold, 0 ) ) );
}
} // end namespace itk
#endif
|