/usr/include/ITK-4.5/itkImageBase.h is in libinsighttoolkit4-dev 4.5.0-3.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 | /*=========================================================================
*
* Copyright Insight Software Consortium
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0.txt
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
*=========================================================================*/
/*=========================================================================
*
* Portions of this file are subject to the VTK Toolkit Version 3 copyright.
*
* Copyright (c) Ken Martin, Will Schroeder, Bill Lorensen
*
* For complete copyright, license and disclaimer of warranty information
* please refer to the NOTICE file at the top of the ITK source tree.
*
*=========================================================================*/
#ifndef __itkImageBase_h
#define __itkImageBase_h
#include "itkDataObject.h"
#include "itkImageRegion.h"
#include "itkMatrix.h"
#include "itkObjectFactory.h"
#include "itkOffset.h"
#include "itkFixedArray.h"
#include "itkImageHelper.h"
#include "itkFloatTypes.h"
//HACK: vnl/vnl_matrix_fixed.txx is needed here?
// to avoid undefined symbol vnl_matrix_fixed<double, 8u, 8u>::set_identity()", referenced from
#include "vnl/vnl_matrix_fixed.txx"
#include "itkImageTransformHelper.h"
namespace itk
{
/* Forward declaration (ImageTransformHelper include's ImageBase) */
template< unsigned int NImageDimension, unsigned int R, unsigned int C, typename TPointValue, typename TMatrixValue >
class ImageTransformHelper;
/** \class ImageBase
* \brief Base class for templated image classes.
*
* ImageBase is the base class for the templated Image
* classes. ImageBase is templated over the dimension of the image. It
* provides the API and ivars that depend solely on the dimension of
* the image. ImageBase does not store any of the image (pixel) data.
* Storage for the pixels and the pixel access methods are defined in
* subclasses of ImageBase, namely Image and ImageAdaptor.
*
* ImageBase manages the geometry of an image. The geometry of an
* image is defined by its position, orientation, spacing, and extent.
*
* The position and orientation of an image is defined by its "Origin"
* and its "Directions". The "Origin" is the physical position of the
* pixel whose "Index" is all zeros. The "Direction" of an image is a
* matrix whose columns indicate the direction in physical space that
* each dimension of the image traverses. The first column defines the
* direction that the fastest moving index in the image traverses in
* physical space while the last column defines the direction that the
* slowest moving index in the image traverses in physical space.
*
* The extent of an image is defined by the pixel spacing and a set of
* regions. The "Spacing" is the size of a pixel in physical space
* along each dimension. Regions describe a portion of an image grid
* via a starting index for the image array and a size (or number of
* pixels) in each dimension. The ivar LargestPossibleRegion defines
* the size and starting index of the image dataset. The entire image
* dataset, however, may not be resident in memory. The region of the
* image that is resident in memory is defined by the
* "BufferedRegion". The Buffer is a contiguous block of memory. The
* third set of meta-data defines a region of interest, called the
* "RequestedRegion". The RequestedRegion is used by the pipeline
* execution model to define what a filter is requested to produce.
*
* [RegionIndex, RegionSize] C [BufferIndex, BufferSize]
* C [ImageIndex, ImageSize]
*
* ImageBase provides all the methods for converting between the
* physical space and index coordinate
* frames. TransformIndexToPhysicalPoint() converts an Index in the
* pixel array into its coordinates in physical space.
* TransformPhysicalPointToIndex() converts a position in physical
* space into an Index into the pixel array (using
* rounding). Subpixel locations are supported by methods that
* convert to and from ContinuousIndex types.
*
* ImageBase also provides helper routines for the ImageIterators
* which convert an Index to an offset in memory from the first pixel
* address as well as covert an offset in memory from the first pixel
* address to an Index.
*
* \ingroup ImageObjects
* \ingroup ITKSystemObjects
*
* \ingroup ITKCommon
*/
template< unsigned int VImageDimension = 2 >
class ImageBase:public DataObject
{
public:
/** Standard typedefs. */
typedef ImageBase Self;
typedef DataObject Superclass;
typedef SmartPointer< Self > Pointer;
typedef SmartPointer< const Self > ConstPointer;
/** Method for creation through the object factory. */
itkNewMacro(Self);
/** Run-time type information (and related methods). */
itkTypeMacro(ImageBase, DataObject);
/** Dimension of the image. This constant is used by functions that are
* templated over image type (as opposed to being templated over pixel
* type and dimension) when they need compile time access to the dimension
* of the image. */
itkStaticConstMacro(ImageDimension, unsigned int, VImageDimension);
/** Index typedef support. An index is used to access pixel values. */
typedef Index< VImageDimension > IndexType;
typedef typename IndexType::IndexValueType IndexValueType;
/** Offset typedef support. An offset represent relative position
* between indices. */
typedef Offset< VImageDimension > OffsetType;
typedef typename OffsetType::OffsetValueType OffsetValueType;
/** Size typedef support. A size is used to define region bounds. */
typedef Size< VImageDimension > SizeType;
typedef typename SizeType::SizeValueType SizeValueType;
/** Region typedef support. A region is used to specify a subset of an image. */
typedef ImageRegion< VImageDimension > RegionType;
/** Spacing typedef support. Spacing holds the size of a pixel.
* The spacing is the geometric distance between image samples along
* each dimension. ITK only supports positive spacing value:
* negative values may cause undesirable results. */
typedef SpacePrecisionType SpacingValueType;
typedef Vector< SpacingValueType, VImageDimension > SpacingType;
/** Origin typedef support. The origin is the geometric coordinates
* of the index (0,0). */
typedef SpacePrecisionType PointValueType;
typedef Point< PointValueType, VImageDimension > PointType;
/** Direction typedef support. The Direction is a matix of
* direction cosines that specify the direction in physical space
* between samples along each dimension. */
typedef Matrix< SpacePrecisionType, VImageDimension, VImageDimension > DirectionType;
/** Restore object to initialized state. */
void Initialize();
/** Image dimension. The dimension of an image is fixed at construction. */
static unsigned int GetImageDimension()
{ return VImageDimension; }
/** Set the origin of the image. The origin is the geometric
* coordinates of the image origin (pixel [0,0]). It is stored internally
* as SpacePrecisionType but may be set from float or double.
* \sa GetOrigin() */
itkSetMacro(Origin, PointType);
virtual void SetOrigin(const double origin[VImageDimension]);
virtual void SetOrigin(const float origin[VImageDimension]);
/** Set the direction cosines of the image. The direction cosines
* are vectors that point from one pixel to the next.
*
* Each column of the matrix indicates the direction cosines of the unit vector
* that is parallel to the lines of the image grid corresponding to that
* dimension. For example, an image with Direction matrix
*
* 0.866 0.500
* -0.500 0.866
*
* has an image grid were the fastest changing index (dimension[0]) walks
* over a line that in physical space is oriented parallel to the vector
* (0.866, -0.5). The second fastest changing index (dimension[1]) walks along
* a line that in Physical space is oriented parallel to the vector
* (0.5, 0.866)
*
* The columns of the Direction matrix are expected to form an
* orthogonal right handed coordinate syste. But this is not
* checked nor enforced in itk::ImageBase.
*
* For details, please see:
*
* http://www.itk.org/Wiki/Proposals:Orientation#Some_notes_on_the_DICOM_convention_and_current_ITK_usage
*
* \sa GetDirection() */
virtual void SetDirection(const DirectionType & direction);
/** Get the direction cosines of the image. The direction cosines
* are vectors that point from one pixel to the next.
* For ImageBase and Image, the default direction is identity. */
itkGetConstReferenceMacro(Direction, DirectionType);
/** Get the inverse direction cosines of the image.
* These are calculated automatically in SetDirection, thus there
* is no Set accessor. */
itkGetConstReferenceMacro(InverseDirection, DirectionType);
/** Get the spacing (size of a pixel) `of the image. The
* spacing is the geometric distance between image samples along
* each dimension. The value returned is a Vector<double, VImageDimension>.
* For ImageBase and Image, the default data spacing is unity. */
itkGetConstReferenceMacro(Spacing, SpacingType);
/** Get the origin of the image. The origin is the geometric
* coordinates of the index (0,0). The value returned is a
* Point<double, VImageDimension>. For ImageBase and Image, the
* default origin is 0. */
itkGetConstReferenceMacro(Origin, PointType);
/** Allocate the image memory. The size of the image must
* already be set, e.g. by calling SetRegions() or SetBufferedRegion().
*
* This method should be pure virtual, if backwards compatibility
* was not required.
*/
virtual void Allocate() {}
/** Set the region object that defines the size and starting index
* for the largest possible region this image could represent. This
* is used in determining how much memory would be needed to load an
* entire dataset. It is also used to determine boundary true
* conditions.
* \sa ImageRegion, SetBufferedRegion(), SetRequestedRegion() */
virtual void SetLargestPossibleRegion(const RegionType & region);
/** Get the region object that defines the size and starting index
* for the largest possible region this image could represent. This
* is used in determining how much memory would be needed to load an
* entire dataset. It is also used to determine boundary true
* conditions.
* \sa ImageRegion, GetBufferedRegion(), GetRequestedRegion() */
virtual const RegionType & GetLargestPossibleRegion() const
{ return m_LargestPossibleRegion; }
/** Set the region object that defines the size and starting index
* of the region of the image currently loaded in memory.
* \sa ImageRegion, SetLargestPossibleRegion(), SetRequestedRegion() */
virtual void SetBufferedRegion(const RegionType & region);
/** Get the region object that defines the size and starting index
* of the region of the image currently loaded in memory.
* \sa ImageRegion, SetLargestPossibleRegion(), SetRequestedRegion() */
virtual const RegionType & GetBufferedRegion() const
{ return m_BufferedRegion; }
/** Set the region object that defines the size and starting index
* for the region of the image requested (i.e., the region of the
* image to be operated on by a filter). Setting the RequestedRegion
* does not cause the object to be modified. This method is called
* internally by the pipeline and therefore bypasses the modified
* time calculation.
* \sa ImageRegion, SetLargestPossibleRegion(), SetBufferedRegion() */
virtual void SetRequestedRegion(const RegionType & region);
/** Set the requested region from this data object to match the requested
* region of the data object passed in as a parameter. This method
* implements the API from DataObject. The data object parameter must be
* castable to an ImageBase. Setting the RequestedRegion does not cause
* the object to be modified. This method is called internally by
* the pipeline and therefore bypasses the modified time
* calculation. */
virtual void SetRequestedRegion( const DataObject *data );
/** Get the region object that defines the size and starting index
* for the region of the image requested (i.e., the region of the
* image to be operated on by a filter).
* \sa ImageRegion, SetLargestPossibleRegion(), SetBufferedRegion() */
virtual const RegionType & GetRequestedRegion() const
{ return m_RequestedRegion; }
/** Convenience methods to set the LargestPossibleRegion,
* BufferedRegion and RequestedRegion. Allocate must still be called.
*/
virtual void SetRegions(const RegionType& region)
{
this->SetLargestPossibleRegion(region);
this->SetBufferedRegion(region);
this->SetRequestedRegion(region);
}
virtual void SetRegions(const SizeType& size)
{
RegionType region; region.SetSize(size);
this->SetLargestPossibleRegion(region);
this->SetBufferedRegion(region);
this->SetRequestedRegion(region);
}
/** Get the offset table. The offset table gives increments for
* moving from one pixel to next in the current row, column, slice,
* etc.. This table if of size [VImageDimension+1], because its
* values are computed progressively as: {1, N1, N1*N2,
* N1*N2*N3,...,(N1*...*Nn)} Where the values {N1,...,Nn} are the
* elements of the BufferedRegion::Size array. The last element of
* the OffsetTable is equivalent to the BufferSize. Having a
* [VImageDimension+1] size array, simplifies the implementation of
* some data accessing algorithms. The entries in the offset table
* are only valid after the BufferedRegion is set. */
const OffsetValueType * GetOffsetTable() const { return m_OffsetTable; }
/** Compute an offset from the beginning of the buffer for a pixel
* at the specified index. The index is not checked as to whether it
* is inside the current buffer, so the computed offset could
* conceivably be outside the buffer. If bounds checking is needed,
* one can call ImageRegion::IsInside(ind) on the BufferedRegion
* prior to calling ComputeOffset. */
inline OffsetValueType ComputeOffset(const IndexType & ind) const
{
OffsetValueType offset = 0;
ImageHelper< VImageDimension, VImageDimension >::ComputeOffset(this->GetBufferedRegion().GetIndex(),
ind,
m_OffsetTable,
offset);
return offset;
/* NON TEMPLATE_META_PROGRAMMING_LOOP_UNROLLING data version
* Leaving here for documentation purposes
* OffsetValueType ComputeOffset(const IndexType & ind) const
* {
* // need to add bounds checking for the region/buffer?
* OffsetValueType offset = 0;
* const IndexType & bufferedRegionIndex = this->GetBufferedRegion().GetIndex();
* // data is arranged as [][][][slice][row][col]
* // with Index[0] = col, Index[1] = row, Index[2] = slice
* for ( int i = VImageDimension - 1; i > 0; i-- )
* {
* offset += ( ind[i] - bufferedRegionIndex[i] ) * m_OffsetTable[i];
* }
* offset += ( ind[0] - bufferedRegionIndex[0] );
* return offset;
* }
*/
}
/** Compute the index of the pixel at a specified offset from the
* beginning of the buffered region. Bounds checking is not
* performed. Thus, the computed index could be outside the
* BufferedRegion. To ensure a valid index, the parameter "offset"
* should be between 0 and the number of pixels in the
* BufferedRegion (the latter can be found using
* ImageRegion::GetNumberOfPixels()). */
inline IndexType ComputeIndex(OffsetValueType offset) const
{
IndexType index;
const IndexType & bufferedRegionIndex = this->GetBufferedRegion().GetIndex();
ImageHelper< VImageDimension, VImageDimension >::ComputeIndex(bufferedRegionIndex,
offset,
m_OffsetTable,
index);
return index;
/* NON TEMPLATE_META_PROGRAMMING_LOOP_UNROLLING data version
* Leaving here for documentation purposes
* IndexType ComputeIndex(OffsetValueType offset) const
* {
* IndexType index;
* const IndexType & bufferedRegionIndex = this->GetBufferedRegion().GetIndex();
* for ( int i = VImageDimension - 1; i > 0; i-- )
* {
* index[i] = static_cast< IndexValueType >( offset / m_OffsetTable[i] );
* offset -= ( index[i] * m_OffsetTable[i] );
* index[i] += bufferedRegionIndex[i];
* }
* index[0] = bufferedRegionIndex[0] + static_cast< IndexValueType >( offset );
* return index;
* }
*/
}
/** Set the spacing (size of a pixel) of the image. The spacing is
* the geometric distance between image samples along each
* dimension. It is stored internally as double, but may be set from
* float. These methods also pre-compute the Index to Physical point
* transforms of the image.
* \sa GetSpacing() */
virtual void SetSpacing(const SpacingType & spacing);
virtual void SetSpacing(const double spacing[VImageDimension]);
virtual void SetSpacing(const float spacing[VImageDimension]);
/** Get the index (discrete) of a voxel from a physical point.
* Floating point index results are rounded to integers
* Returns true if the resulting index is within the image, false otherwise
* \sa Transform */
template< typename TCoordRep >
bool TransformPhysicalPointToIndex(
const Point< TCoordRep, VImageDimension > & point,
IndexType & index) const
{
ImageTransformHelper< VImageDimension,VImageDimension - 1, VImageDimension - 1, TCoordRep, SpacePrecisionType >
::TransformPhysicalPointToIndex(this->m_PhysicalPointToIndex, this->m_Origin, point, index);
// Now, check to see if the index is within allowed bounds
const bool isInside = this->GetLargestPossibleRegion().IsInside(index);
return isInside;
/* NON TEMPLATE_META_PROGRAMMING_LOOP_UNROLLING data version
* Leaving here for documentation purposes
* template< typename TCoordRep >
* bool TransformPhysicalPointToIndex(
* const Point< TCoordRep, VImageDimension > & point,
* IndexType & index) const
* {
* for ( unsigned int i = 0; i < VImageDimension; i++ )
* {
* TCoordRep sum = NumericTraits< TCoordRep >::Zero;
* for ( unsigned int j = 0; j < VImageDimension; j++ )
* {
* sum += this->m_PhysicalPointToIndex[i][j] * ( point[j] - this->m_Origin[j] );
* }
* index[i] = Math::RoundHalfIntegerUp< IndexValueType >(sum);
* }
* // Now, check to see if the index is within allowed bounds
* const bool isInside = this->GetLargestPossibleRegion().IsInside(index);
* return isInside;
* }
*/
}
/** \brief Get the continuous index from a physical point
*
* Returns true if the resulting index is within the image, false otherwise.
* \sa Transform */
template< typename TCoordRep, typename TIndexRep >
bool TransformPhysicalPointToContinuousIndex(
const Point< TCoordRep, VImageDimension > & point,
ContinuousIndex< TIndexRep, VImageDimension > & index) const
{
Vector< SpacePrecisionType, VImageDimension > cvector;
for ( unsigned int k = 0; k < VImageDimension; k++ )
{
cvector[k] = point[k] - this->m_Origin[k];
}
cvector = m_PhysicalPointToIndex * cvector;
for ( unsigned int i = 0; i < VImageDimension; i++ )
{
index[i] = static_cast< TIndexRep >( cvector[i] );
}
// Now, check to see if the index is within allowed bounds
const bool isInside = this->GetLargestPossibleRegion().IsInside(index);
return isInside;
}
/** Get a physical point (in the space which
* the origin and spacing information comes from)
* from a continuous index (in the index space)
* \sa Transform */
template< typename TCoordRep, typename TIndexRep >
void TransformContinuousIndexToPhysicalPoint(
const ContinuousIndex< TIndexRep, VImageDimension > & index,
Point< TCoordRep, VImageDimension > & point) const
{
for ( unsigned int r = 0; r < VImageDimension; r++ )
{
TCoordRep sum = NumericTraits< TCoordRep >::Zero;
for ( unsigned int c = 0; c < VImageDimension; c++ )
{
sum += this->m_IndexToPhysicalPoint(r, c) * index[c];
}
point[r] = sum + this->m_Origin[r];
}
}
/** Get a physical point (in the space which
* the origin and spacing information comes from)
* from a discrete index (in the index space)
*
* \sa Transform */
template< typename TCoordRep >
void TransformIndexToPhysicalPoint(
const IndexType & index,
Point< TCoordRep, VImageDimension > & point) const
{
ImageTransformHelper< VImageDimension, VImageDimension - 1, VImageDimension - 1,TCoordRep, SpacePrecisionType >::
TransformIndexToPhysicalPoint(this->m_IndexToPhysicalPoint, this->m_Origin, index, point);
/* NON TEMPLATE_META_PROGRAMMING_LOOP_UNROLLING data version
* Leaving here for documentation purposes
* template< typename TCoordRep >
* void TransformIndexToPhysicalPoint(
* const IndexType & index,
* Point< TCoordRep, VImageDimension > & point) const
* {
* for ( unsigned int i = 0; i < VImageDimension; i++ )
* {
* point[i] = this->m_Origin[i];
* for ( unsigned int j = 0; j < VImageDimension; j++ )
* {
* point[i] += m_IndexToPhysicalPoint[i][j] * index[j];
* }
* }
* }
*/
}
/** Take a vector or covariant vector that has been computed in the
* coordinate system parallel to the image grid and rotate it by the
* direction cosines in order to get it in terms of the coordinate system of
* the image acquisition device. This implementation in the Image
* multiply the array (vector or covariant vector) by the matrix of Direction
* Cosines. The arguments of the method are of type FixedArray to make
* possible to use this method with both Vector and CovariantVector.
* The Method is implemented differently in the itk::Image.
*
* \sa Image
*/
template< typename TCoordRep >
void TransformLocalVectorToPhysicalVector(
const FixedArray< TCoordRep, VImageDimension > & inputGradient,
FixedArray< TCoordRep, VImageDimension > & outputGradient) const
{
//
//TODO: This temporary implementation should be replaced with Template
// MetaProgramming.
//
const DirectionType & direction = this->GetDirection();
for ( unsigned int i = 0; i < VImageDimension; i++ )
{
typedef typename NumericTraits< TCoordRep >::AccumulateType CoordSumType;
CoordSumType sum = NumericTraits< CoordSumType >::Zero;
for ( unsigned int j = 0; j < VImageDimension; j++ )
{
sum += direction[i][j] * inputGradient[j];
}
outputGradient[i] = static_cast< TCoordRep >( sum );
}
}
/** Take a vector or covariant vector that has been computed in terms of the
* coordinate system of the image acquisition device, and rotate it by the
* inverse direction cosines in order to get it in the coordinate system
* parallel to the image grid. This implementation in the Image
* multiply the array (vector or covariant vector) by the inverse of Direction
* Cosines. The arguments of the method are of type FixedArray to make
* possible to use this method with both Vector and CovariantVector.
*/
template< typename TCoordRep >
void TransformPhysicalVectorToLocalVector(
const FixedArray< TCoordRep, VImageDimension > & inputGradient,
FixedArray< TCoordRep, VImageDimension > & outputGradient) const
{
//
//TODO: This temporary implementation should be replaced with Template
// MetaProgramming.
//
const DirectionType & inverseDirection = this->GetInverseDirection();
for ( unsigned int i = 0; i < VImageDimension; i++ )
{
typedef typename NumericTraits< TCoordRep >::AccumulateType CoordSumType;
CoordSumType sum = NumericTraits< CoordSumType >::Zero;
for ( unsigned int j = 0; j < VImageDimension; j++ )
{
sum += inverseDirection[i][j] * inputGradient[j];
}
outputGradient[i] = static_cast< TCoordRep >( sum );
}
}
/** Copy information from the specified data set. This method is
* part of the pipeline execution model. By default, a ProcessObject
* will copy meta-data from the first input to all of its
* outputs. See ProcessObject::GenerateOutputInformation(). Each
* subclass of DataObject is responsible for being able to copy
* whatever meta-data it needs from from another DataObject.
* ImageBase has more meta-data than its DataObject. Thus, it must
* provide its own version of CopyInformation() in order to copy the
* LargestPossibleRegion from the input parameter. */
virtual void CopyInformation(const DataObject *data);
/** Graft the data and information from one image to another. This
* is a convenience method to setup a second image with all the meta
* information of another image and use the same pixel
* container. Note that this method is different than just using two
* SmartPointers to the same image since separate DataObjects are
* still maintained. This method is similar to
* ImageSource::GraftOutput(). The implementation in ImageBase
* simply calls CopyInformation() and copies the region ivars.
* Subclasses of ImageBase are responsible for copying the pixel
* container. */
virtual void Graft(const DataObject *data);
/** Update the information for this DataObject so that it can be used
* as an output of a ProcessObject. This method is used the pipeline
* mechanism to propagate information and initialize the meta data
* associated with a DataObject. This method calls its source's
* ProcessObject::UpdateOutputInformation() which determines modified
* times, LargestPossibleRegions, and any extra meta data like spacing,
* origin, etc. */
virtual void UpdateOutputInformation();
/** UpdateOutputData() is part of the pipeline infrastructure to
* communicate between ProcessObjects and DataObjects. The method of
* the superclass is overriden to check if the requested image
* region has zero pixels. This is needed so that filters can set an
* input's requested region to zero, to indicate that it does not
* need to be updated or executed.
*/
virtual void UpdateOutputData();
/** Set the RequestedRegion to the LargestPossibleRegion. This
* forces a filter to produce all of the output in one execution
* (i.e. not streaming) on the next call to Update(). */
virtual void SetRequestedRegionToLargestPossibleRegion();
/** Determine whether the RequestedRegion is outside of the
* BufferedRegion. This method returns true if the RequestedRegion
* is outside the BufferedRegion (true if at least one pixel is
* outside). This is used by the pipeline mechanism to determine
* whether a filter needs to re-execute in order to satisfy the
* current request. If the current RequestedRegion is already
* inside the BufferedRegion from the previous execution (and the
* current filter is up to date), then a given filter does not need
* to re-execute */
virtual bool RequestedRegionIsOutsideOfTheBufferedRegion();
/** Verify that the RequestedRegion is within the
* LargestPossibleRegion. If the RequestedRegion is not within the
* LargestPossibleRegion, then the filter cannot possible satisfy
* the request. This method returns true if the request can be
* satisfied and returns fails if the request cannot. This method is
* used by PropagateRequestedRegion(). PropagateRequestedRegion()
* throws a InvalidRequestedRegionError exception is the requested
* region is not within the LargestPossibleRegion. */
virtual bool VerifyRequestedRegion();
/** INTERNAL This method is used internally by filters to copy meta-data from
* the output to the input. Users should not have a need to use this method.
*
* Filters that override the ProcessObject's GenerateOutputInformation()
* should generally have the following line if they want to propagate meta-
* data for both Image and VectorImage
* \code
* outputImage->SetNumberOfComponentsPerPixel(
* inputImage->GetNumberOfComponentsPerPixel() )
* \endcode
*
* \sa ImageBase, VectorImage
*
* Returns/Sets the number of components in the image. Note that in the
* ImageBase implementation, this always returns 1. Image returns the
* # returned from NumericTraits for the pixel type, and VectorImage
* returns the vector length set by the user.
*/
virtual unsigned int GetNumberOfComponentsPerPixel() const;
virtual void SetNumberOfComponentsPerPixel(unsigned int);
protected:
ImageBase();
~ImageBase();
virtual void PrintSelf(std::ostream & os, Indent indent) const;
/** Calculate the offsets needed to move from one pixel to the next
* along a row, column, slice, volume, etc. These offsets are based
* on the size of the BufferedRegion. This should be called after
* the BufferedRegion is set. */
void ComputeOffsetTable();
/** Compute helper matrices used to transform Index coordinates to
* PhysicalPoint coordinates and back. This method is virtual and will be
* overloaded in derived classes in order to provide backward compatibility
* behavior in classes that did not used to take image orientation into
* account. */
virtual void ComputeIndexToPhysicalPointMatrices();
protected:
/** Origin, spacing, and direction in physical coordinates. This variables are
* protected for efficiency. They are referenced frequently by
* inner loop calculations. */
SpacingType m_Spacing;
PointType m_Origin;
DirectionType m_Direction;
DirectionType m_InverseDirection;
/** Matrices intended to help with the conversion of Index coordinates
* to PhysicalPoint coordinates */
DirectionType m_IndexToPhysicalPoint;
DirectionType m_PhysicalPointToIndex;
/** Restores the buffered region to it's default state
* This method does not call Modify because Initialization is
* called by ReleaseData and can not modify the MTime
* \sa ReleaseData, Initialize, SetBufferedRegion */
virtual void InitializeBufferedRegion(void);
private:
ImageBase(const Self &); //purposely not implemented
void operator=(const Self &); //purposely not implemented
void InternalSetSpacing(const SpacingValueType spacing[VImageDimension])
{
SpacingType s(spacing);
this->SetSpacing(s);
}
template <typename TSpacingValue>
void InternalSetSpacing(const TSpacingValue spacing[VImageDimension])
{
Vector<TSpacingValue,VImageDimension> sf(spacing);
SpacingType s;
s.CastFrom(sf);
this->SetSpacing(s);
}
OffsetValueType m_OffsetTable[VImageDimension + 1];
RegionType m_LargestPossibleRegion;
RegionType m_RequestedRegion;
RegionType m_BufferedRegion;
};
} // end namespace itk
#ifndef ITK_MANUAL_INSTANTIATION
#include "itkImageBase.hxx"
#endif
#endif
|