/usr/include/ITK-4.5/itkImageGaussianModelEstimator.h is in libinsighttoolkit4-dev 4.5.0-3.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 | /*=========================================================================
*
* Copyright Insight Software Consortium
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0.txt
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
*=========================================================================*/
#ifndef __itkImageGaussianModelEstimator_h
#define __itkImageGaussianModelEstimator_h
#include <cmath>
#include <cfloat>
#include "vnl/vnl_vector.h"
#include "vnl/vnl_matrix.h"
#include "vnl/vnl_matrix_fixed.h"
#include "vnl/vnl_math.h"
#include "vnl/algo/vnl_matrix_inverse.h"
#include "itkImageRegionIterator.h"
#include "itkMacro.h"
#include "itkImageModelEstimatorBase.h"
namespace itk
{
/** \class ImageGaussianModelEstimator
* \brief Base class for ImageGaussianModelEstimator object.
*
* itkImageGaussianModelEstimator generates the Gaussian model for given
* tissue types (or class types) in an input training data set for
* segmentation. The training data set is typically provided as a set of
* labelled/classified data set by the user. A Gaussian model is generated
* for each label present in the training data set.
*
* The user should ensure that both the input and training images
* are of the same size. The input data consists of the raw data and the
* training data has class labels associated with each pixel.
*
* A zero label is used to identify the background. A model is not
* calcualted for the background (its mean and covariance will be
* zero). Positive labels are classes for which models will be
* estimated. Negative labels indicate unlabeled data where no models
* will be estimated.
*
* This object supports data handling of multiband images. The object
* accepts the input image in vector format only, where each pixel is a
* vector and each element of the vector corresponds to an entry from
* 1 particular band of a multiband dataset. A single band image is treated
* as a vector image with a single element for every vector. The classified
* image is treated as a single band scalar image.
*
* This function is templated over the type of input and output images. In
* addition, a third parameter for the MembershipFunction needs to be
* specified. In this case a Membership function that stores Gaussian models
* needs to be specified.
*
* The function EstimateModels() calculates the various models, creates the
* membership function objects and populates them.
*
* \ingroup ClassificationFilters
* \ingroup ITKClassifiers
*/
template< typename TInputImage,
typename TMembershipFunction,
typename TTrainingImage >
class ImageGaussianModelEstimator:
public ImageModelEstimatorBase< TInputImage, TMembershipFunction >
{
public:
/** Standard class typedefs. */
typedef ImageGaussianModelEstimator Self;
typedef ImageModelEstimatorBase< TInputImage, TMembershipFunction > Superclass;
typedef SmartPointer< Self > Pointer;
typedef SmartPointer< const Self > ConstPointer;
/** Method for creation through the object factory. */
itkNewMacro(Self);
/** Run-time type information (and related methods). */
itkTypeMacro(ImageGaussianModelEstimator, ImageModelEstimatorBase);
/** Type definition for the input image. */
typedef TInputImage InputImageType;
typedef typename TInputImage::Pointer InputImagePointer;
typedef typename TInputImage::ConstPointer InputImageConstPointer;
/** Type definitions for the training image. */
typedef TTrainingImage TrainingImageType;
typedef typename TTrainingImage::Pointer TrainingImagePointer;
typedef typename TTrainingImage::ConstPointer TrainingImageConstPointer;
/** Type definition for the vector associated with
* input image pixel type. */
typedef typename TInputImage::PixelType InputImagePixelType;
/** Type definitions for the vector holding
* training image pixel type. */
typedef typename TTrainingImage::PixelType TrainingImagePixelType;
/** Type definitions for the iterators for the input and training images. */
typedef ImageRegionIterator< TInputImage > InputImageIterator;
typedef ImageRegionConstIterator< TInputImage > InputImageConstIterator;
typedef ImageRegionIterator< TTrainingImage > TrainingImageIterator;
typedef ImageRegionConstIterator< TTrainingImage > TrainingImageConstIterator;
/** Type definitions for the membership function . */
typedef TMembershipFunction MembershipFunctionType;
typedef typename TMembershipFunction::Pointer MembershipFunctionPointer;
/** Get/Set the training image. */
itkSetObjectMacro(TrainingImage, TrainingImageType);
itkGetModifiableObjectMacro(TrainingImage, TrainingImageType);
protected:
ImageGaussianModelEstimator();
~ImageGaussianModelEstimator();
virtual void PrintSelf(std::ostream & os, Indent indent) const;
/** Starts the image modelling process */
void GenerateData();
private:
ImageGaussianModelEstimator(const Self &); //purposely not implemented
void operator=(const Self &); //purposely not implemented
typedef vnl_matrix< double > MatrixType;
typedef typename TInputImage::SizeType InputImageSizeType;
/** Dimension of each individual pixel vector. */
itkStaticConstMacro(VectorDimension, unsigned int,
InputImagePixelType::Dimension);
MatrixType m_NumberOfSamples;
MatrixType m_Means;
MatrixType *m_Covariance;
TrainingImagePointer m_TrainingImage;
/** A function that generates the
* model based on the training input data.
* Achieves the goal of training the classifier. */
virtual void EstimateModels();
void EstimateGaussianModelParameters();
}; // class ImageGaussianModelEstimator
} // namespace itk
#ifndef ITK_MANUAL_INSTANTIATION
#include "itkImageGaussianModelEstimator.hxx"
#endif
#endif
|