/usr/include/ITK-4.5/itkImageGaussianModelEstimator.hxx is in libinsighttoolkit4-dev 4.5.0-3.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 | /*=========================================================================
*
* Copyright Insight Software Consortium
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0.txt
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
*=========================================================================*/
#ifndef __itkImageGaussianModelEstimator_hxx
#define __itkImageGaussianModelEstimator_hxx
#include "itkImageGaussianModelEstimator.h"
namespace itk
{
template< typename TInputImage,
typename TMembershipFunction,
typename TTrainingImage >
ImageGaussianModelEstimator< TInputImage, TMembershipFunction, TTrainingImage >
::ImageGaussianModelEstimator(void):
m_Covariance(NULL)
{}
template< typename TInputImage,
typename TMembershipFunction,
typename TTrainingImage >
ImageGaussianModelEstimator< TInputImage, TMembershipFunction, TTrainingImage >
::~ImageGaussianModelEstimator(void)
{
delete[] m_Covariance;
}
/**
* PrintSelf
*/
template< typename TInputImage,
typename TMembershipFunction,
typename TTrainingImage >
void
ImageGaussianModelEstimator< TInputImage, TMembershipFunction, TTrainingImage >
::PrintSelf(std::ostream & os, Indent indent) const
{
os << indent << " " << std::endl;
os << indent << "Gaussian Models generated from the training data." << std::endl;
os << indent << "TrainingImage: ";
os << m_TrainingImage.GetPointer() << std::endl;
os << indent << "Results printed in the superclass " << std::endl;
os << indent << " " << std::endl;
Superclass::PrintSelf(os, indent);
} // end PrintSelf
/**
* Generate data (start the model building process)
*/
template< typename TInputImage,
typename TMembershipFunction,
typename TTrainingImage >
void
ImageGaussianModelEstimator< TInputImage, TMembershipFunction, TTrainingImage >
::GenerateData()
{
this->EstimateModels();
} // end Generate data
// Takes a set of training images and returns the means
// and variance of the various classes defined in the
// training set.
template< typename TInputImage,
typename TMembershipFunction,
typename TTrainingImage >
void
ImageGaussianModelEstimator< TInputImage, TMembershipFunction, TTrainingImage >
::EstimateModels()
{
//Do some error checking
InputImageConstPointer inputImage = this->GetInputImage();
// Check if the training and input image dimensions are the same
if ( (int)(TInputImage::ImageDimension) != (int)(TTrainingImage::ImageDimension) )
{
throw ExceptionObject(__FILE__, __LINE__, "Training and input image dimensions are not the same.", ITK_LOCATION);
}
InputImageSizeType inputImageSize = inputImage->GetBufferedRegion().GetSize();
TrainingImageConstPointer trainingImage = this->GetTrainingImage();
typedef InputImageSizeType TrainingImageSizeType;
TrainingImageSizeType trainingImageSize = trainingImage->GetBufferedRegion().GetSize();
// Check if size of the two inputs are the same
for ( unsigned int i = 0; i < TInputImage::ImageDimension; i++ )
{
if ( inputImageSize[i] != trainingImageSize[i] ) { throw ExceptionObject(
__FILE__,
__LINE__,
"Input image size is not the same as the training image size.",
ITK_LOCATION); }
}
//-------------------------------------------------------------------
// Set up the gaussian membership calculators
//-------------------------------------------------------------------
unsigned int numberOfModels = this->GetNumberOfModels();
//-------------------------------------------------------------------
// Call local function to estimate mean variances of the various
// class labels in the training set.
// The statistics class functions have not been used since all the
// class statistics are calculated simultaneously here.
//-------------------------------------------------------------------
this->EstimateGaussianModelParameters();
//-------------------------------------------------------------------
// Populate the membership functions for all the classes
//-------------------------------------------------------------------
MembershipFunctionPointer membershipFunction;
typename MembershipFunctionType::MeanVectorType tmean;
typename MembershipFunctionType::CovarianceMatrixType tcov;
NumericTraits<typename MembershipFunctionType::MeanVectorType>::SetLength(tmean, VectorDimension);
for ( unsigned int classIndex = 0; classIndex < numberOfModels; classIndex++ )
{
membershipFunction = TMembershipFunction::New();
// Convert to the datatype used for the mean
for (unsigned int i=0; i < VectorDimension; ++i)
{
tmean[i] = m_Means.get(classIndex, i);
}
membershipFunction->SetMean( tmean );
tcov = m_Covariance[classIndex]; // convert cov for membership fn
membershipFunction->SetCovariance(tcov);
this->AddMembershipFunction(membershipFunction);
}
} // end train classifier
template< typename TInputImage,
typename TMembershipFunction,
typename TTrainingImage >
void
ImageGaussianModelEstimator< TInputImage, TMembershipFunction, TTrainingImage >
::EstimateGaussianModelParameters()
{
// Set the iterators and the pixel type definition for the input image
InputImageConstPointer inputImage = this->GetInputImage();
InputImageConstIterator inIt( inputImage, inputImage->GetBufferedRegion() );
//-------------------------------------------------------------------
//-------------------------------------------------------------------
// Set the iterators and the pixel type definition for the training image
TrainingImageConstPointer trainingImage = this->GetTrainingImage();
TrainingImageConstIterator trainingImageIt( trainingImage, trainingImage->GetBufferedRegion() );
//-------------------------------------------------------------------
unsigned int numberOfModels = ( this->GetNumberOfModels() );
//-------------------------------------------------------------------
// Set up the matrices to hold the means and the covariance for the
// training data
m_Means.set_size(numberOfModels, VectorDimension);
m_Means.fill(0);
m_NumberOfSamples.set_size(numberOfModels, 1);
m_NumberOfSamples.fill(0);
// delete previous allocation first
delete[] m_Covariance;
//Number of covariance matrices are equal to the number of classes
m_Covariance = (MatrixType *)new MatrixType[numberOfModels];
for ( unsigned int i = 0; i < numberOfModels; i++ )
{
m_Covariance[i].set_size(VectorDimension, VectorDimension);
m_Covariance[i].fill(0);
}
for ( inIt.GoToBegin(); !inIt.IsAtEnd(); ++inIt, ++trainingImageIt )
{
unsigned int classIndex = (unsigned int)trainingImageIt.Get();
// Training data assumed =1 band; also the class indices go
// from 1, 2, ..., n while the corresponding memory goes from
// 0, 1, ..., n-1.
//Ensure that the training data is labelled appropriately
if ( classIndex > numberOfModels )
{
throw ExceptionObject(__FILE__, __LINE__);
}
if ( classIndex > 0 )
{
m_NumberOfSamples[classIndex][0] += 1;
InputImagePixelType inImgVec = inIt.Get();
for ( unsigned int band_x = 0; band_x < VectorDimension; band_x++ )
{
m_Means[classIndex][band_x] += inImgVec[band_x];
for ( unsigned int band_y = 0; band_y <= band_x; band_y++ )
{
m_Covariance[classIndex][band_x][band_y] += inImgVec[band_x] * inImgVec[band_y];
}
}
}
} // end for
//Loop through the classes to calculate the means and covariance
for ( unsigned int classIndex = 0; classIndex < numberOfModels; classIndex++ )
{
if ( m_NumberOfSamples[classIndex][0] != 0 )
{
for ( unsigned int i = 0; i < VectorDimension; i++ )
{
m_Means[classIndex][i] /= m_NumberOfSamples[classIndex][0];
}
} // end if
else
{
for ( unsigned int i = 0; i < VectorDimension; i++ )
{
m_Means[classIndex][i] = 0;
}
} // end else
if ( ( m_NumberOfSamples[classIndex][0] - 1 ) != 0 )
{
for ( unsigned int band_x = 0; band_x < VectorDimension; band_x++ )
{
for ( unsigned int band_y = 0; band_y <= band_x; band_y++ )
{
m_Covariance[classIndex][band_x][band_y] /=
( m_NumberOfSamples[classIndex][0] - 1 );
} // end for band_y loop
} // end for band_x loop
} // end if
else
{
for ( unsigned int band_x = 0; band_x < VectorDimension; band_x++ )
{
for ( unsigned int band_y = 0; band_y <= band_x; band_y++ )
{
m_Covariance[classIndex][band_x][band_y] = 0;
}
}
} // end else
MatrixType tempMeanSq;
tempMeanSq.set_size(VectorDimension, VectorDimension);
tempMeanSq.fill(0);
for ( unsigned int band_x = 0; band_x < VectorDimension; band_x++ )
{
for ( unsigned int band_y = 0; band_y <= band_x; band_y++ )
{
tempMeanSq[band_x][band_y] =
m_Means[classIndex][band_x] * m_Means[classIndex][band_y];
}
} // end for band_x loop
if ( ( m_NumberOfSamples[classIndex][0] - 1 ) != 0 )
{
tempMeanSq *= ( m_NumberOfSamples[classIndex][0]
/ ( m_NumberOfSamples[classIndex][0] - 1 ) );
}
m_Covariance[classIndex] -= tempMeanSq;
// Fill the rest of the covairance matrix and make it symmetric
if ( m_NumberOfSamples[classIndex][0] > 0 )
{
unsigned int lastInX = (unsigned int)( VectorDimension - 1 );
unsigned int upperY = (unsigned int)VectorDimension;
for ( unsigned int band_x = 0; band_x < lastInX; band_x++ )
{
for ( unsigned int band_y = band_x + 1; band_y < upperY; band_y++ )
{
m_Covariance[classIndex][band_x][band_y] =
m_Covariance[classIndex][band_y][band_x];
} // end band_y loop
} // end band_x loop
} // end if loop
} // end class index loop
} // end EstimateGaussianModelParameters
} // namespace itk
#endif
|