This file is indexed.

/usr/include/ITK-4.5/itkImageIOBase.h is in libinsighttoolkit4-dev 4.5.0-3.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
/*=========================================================================
 *
 *  Copyright Insight Software Consortium
 *
 *  Licensed under the Apache License, Version 2.0 (the "License");
 *  you may not use this file except in compliance with the License.
 *  You may obtain a copy of the License at
 *
 *         http://www.apache.org/licenses/LICENSE-2.0.txt
 *
 *  Unless required by applicable law or agreed to in writing, software
 *  distributed under the License is distributed on an "AS IS" BASIS,
 *  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 *  See the License for the specific language governing permissions and
 *  limitations under the License.
 *
 *=========================================================================*/
#ifndef __itkImageIOBase_h
#define __itkImageIOBase_h
#include "ITKIOImageBaseExport.h"

#include "itkIOConfigure.h"

#include "itkLightProcessObject.h"
#include "itkIndent.h"
#include "itkImageIORegion.h"
#include "itkRGBPixel.h"
#include "itkRGBAPixel.h"
#include "itkVariableLengthVector.h"
#include "itkCovariantVector.h"
#include "itkSymmetricSecondRankTensor.h"
#include "itkDiffusionTensor3D.h"
#include "itkImageRegionSplitterBase.h"

#include "vnl/vnl_vector.h"

#include <string>

namespace itk
{
/** \class ImageIOBase
 * \brief Abstract superclass defines image IO interface.
 *
 * ImageIOBase is a class that reads and/or writes image data
 * of a particular format (such as PNG or raw binary). The
 * ImageIOBase encapsulates both the reading and writing of data. The
 * ImageIOBase is used by the ImageFileReader class (to read data)
 * and the ImageFileWriter (to write data) into a single file. The
 * ImageSeriesReader and ImageSeriesWriter classes are used to read
 * and write data (in conjunction with ImageIOBase) when the data is
 * represented by a series of files. Normally the user does not directly
 * manipulate this class other than to instantiate it, set the FileName,
 * and assign it to a ImageFileReader/ImageFileWriter or
 * ImageSeriesReader/ImageSeriesWriter.
 *
 * A Pluggable factory pattern is used this allows different kinds of
 * readers to be registered (even at run time) without having to
 * modify the code in this class.
 *
 * \sa ImageFileWriter
 * \sa ImageFileReader
 * \sa ImageSeriesWriter
 * \sa ImageSeriesReader
 *
 * \ingroup IOFilters
 *
 * \ingroup ITKIOImageBase
 */
class ITKIOImageBase_EXPORT ImageIOBase:public LightProcessObject
{
public:
  /** Standard class typedefs. */
  typedef ImageIOBase          Self;
  typedef LightProcessObject   Superclass;
  typedef SmartPointer< Self > Pointer;

  /** Run-time type information (and related methods). */
  itkTypeMacro(ImageIOBase, Superclass);

  /** Set/Get the name of the file to be read. */
  itkSetStringMacro(FileName);
  itkGetStringMacro(FileName);

  /** Types for managing image size and image index components. */
  typedef ::itk::IndexValueType  IndexValueType;
  typedef ::itk::SizeValueType   SizeValueType;

  /**
   * \class UnknownType
   * Used to return information when types are unknown.
   * \ingroup ITKIOImageBase
   */
  class UnknownType {};

  /** Enums used to manipulate the pixel type. The pixel type provides
   * context for automatic data conversions (for instance, RGB to
   * SCALAR, VECTOR to SCALAR). */
  typedef  enum { UNKNOWNPIXELTYPE, SCALAR, RGB, RGBA, OFFSET, VECTOR,
                  POINT, COVARIANTVECTOR, SYMMETRICSECONDRANKTENSOR,
                  DIFFUSIONTENSOR3D, COMPLEX, FIXEDARRAY, MATRIX }  IOPixelType;

  /** Enums used to manipulate the component type. The component type
   * refers to the actual storage class associated with either a
   * SCALAR pixel type or elements of a compound pixel.
   */
  typedef  enum { UNKNOWNCOMPONENTTYPE, UCHAR, CHAR, USHORT, SHORT, UINT, INT,
                  ULONG, LONG, FLOAT, DOUBLE } IOComponentType;

  /** Set/Get the number of independent variables (dimensions) in the
   * image being read or written. Note this is not necessarily what
   * is written, rather the IORegion controls that. */
  void SetNumberOfDimensions(unsigned int);

  itkGetConstMacro(NumberOfDimensions, unsigned int);

  /** Set/Get the image dimensions in the x, y, z, etc. directions.
   * GetDimensions() is typically used after reading the data; the
   * SetDimensions() is used prior to writing the data. */
  virtual void SetDimensions(unsigned int i, unsigned int dim);

  virtual itk::SizeValueType GetDimensions(unsigned int i) const
  { return m_Dimensions[i]; }

  /** Set/Get the image origin on a axis-by-axis basis. The SetOrigin() method
   * is required when writing the image. */
  virtual void SetOrigin(unsigned int i, double origin);

  virtual double GetOrigin(unsigned int i) const
  {
    return m_Origin[i];
  }

  /** Set/Get the image spacing on an axis-by-axis basis. The
   * SetSpacing() method is required when writing the image. */
  virtual void SetSpacing(unsigned int i, double spacing);

  virtual double GetSpacing(unsigned int i) const
  {
    return m_Spacing[i];
  }

  /** Set/Get the image direction on an axis-by-axis basis. The
   * SetDirection() method is required when writing the image. */
  virtual void SetDirection(unsigned int i, const std::vector< double > & direction);

  virtual void SetDirection(unsigned int i, const vnl_vector< double > & direction);

  virtual std::vector< double > GetDirection(unsigned int i) const
  {
    return m_Direction[i];
  }

  /** Return the directions to be assigned by default to recipient
   *  images whose dimension is smaller than the image dimension in file.  */
  virtual std::vector< double > GetDefaultDirection(unsigned int i) const;

  /** Specify the region of the image data to either read or
   * write. The IORegion specifies the part of the image to read or
   * write. Regions are defined with an index and a size vector. These
   * vectors define the start (lower-left corner) and length of the
   * region within the image. Make sure that the IORegion lies within
   * the image. */
  itkSetMacro(IORegion, ImageIORegion);
  itkGetConstReferenceMacro(IORegion, ImageIORegion);

  /** Set/Get the type of the pixel. The PixelTypes provides context
   * to the IO mechanisms for data conversions.  PixelTypes can be
   * SCALAR, RGB, RGBA, VECTOR, COVARIANTVECTOR, POINT, INDEX. If
   * the PIXELTYPE is SCALAR, then the NumberOfComponents should be 1.
   * Any other of PIXELTYPE will have more than one component. */
  itkSetEnumMacro(PixelType, IOPixelType);
  itkGetEnumMacro(PixelType, IOPixelType);

  /** Set/Get the component type of the image. This is always a native
   * type. */
  itkSetEnumMacro(ComponentType, IOComponentType);
  itkGetEnumMacro(ComponentType, IOComponentType);
  /** get the type_info for the current pixel component type.
   * This function is DEPRECATED and only provided for backwards
   * compatibility.  There is no use for this method that can't
   * be satisfied by calling GetComponentType.
   */
  virtual const std::type_info & GetComponentTypeInfo() const;

  /** Set/Get the number of components per pixel in the image. This may
   * be set by the reading process. For SCALAR pixel types,
   * NumberOfComponents will be 1.  For other pixel types,
   * NumberOfComponents will be greater than or equal to one. */
  itkSetMacro(NumberOfComponents, unsigned int);
  itkGetConstReferenceMacro(NumberOfComponents, unsigned int);

  /** Set/Get a boolean to use the compression or not. */
  itkSetMacro(UseCompression, bool);
  itkGetConstMacro(UseCompression, bool);
  itkBooleanMacro(UseCompression);

  /** Set/Get a boolean to use streaming while reading or not. */
  itkSetMacro(UseStreamedReading, bool);
  itkGetConstMacro(UseStreamedReading, bool);
  itkBooleanMacro(UseStreamedReading);

  /** Set/Get a boolean to use streaming while writing or not. */
  itkSetMacro(UseStreamedWriting, bool);
  itkGetConstMacro(UseStreamedWriting, bool);
  itkBooleanMacro(UseStreamedWriting);

  /** Convenience method returns the IOComponentType as a string. This can be
   * used for writing output files. */
  static std::string GetComponentTypeAsString(IOComponentType);

  /** Convenience method returns the IOComponentType corresponding to a string. */
  static IOComponentType GetComponentTypeFromString(const std::string &typeString);

  /** Convenience method returns the IOPixelType as a string. This can be
   * used for writing output files. */
  static std::string GetPixelTypeAsString(IOPixelType);

  /** Convenience method returns the IOPixelType corresponding to a string. */
  static IOPixelType GetPixelTypeFromString(const std::string &pixelString);

  /** Enums used to specify write style: whether binary or ASCII. Some
   * subclasses use this, some ignore it. */
  typedef  enum { ASCII, Binary, TypeNotApplicable } FileType;

  /** Enums used to specify byte order; whether Big Endian or Little Endian.
   * Some subclasses use this, some ignore it. */
  typedef  enum { BigEndian, LittleEndian, OrderNotApplicable } ByteOrder;

  /** These methods control whether the file is written binary or ASCII.
   * Many file formats (i.e., subclasses) ignore this flag. */
  itkSetEnumMacro(FileType, FileType);
  itkGetEnumMacro(FileType, FileType);
  void SetFileTypeToASCII()
  {
    this->SetFileType(ASCII);
  }

  void SetFileTypeToBinary()
  {
    this->SetFileType(Binary);
  }

  /** These methods indicate the byte ordering of the file you are
   * trying to read in. These methods will then either swap or not
   * swap the bytes depending on the byte ordering of the machine it
   * is being run on. For example, reading in a BigEndian file on a
   * BigEndian machine will result in no swapping. Trying to read the
   * same file on a LittleEndian machine will result in swapping.
   * Note: most UNIX machines are BigEndian while PC's and VAX's are
   * LittleEndian. So if the file you are reading in was generated on
   * a VAX or PC, SetByteOrderToLittleEndian() otherwise
   * SetByteOrderToBigEndian().  Some ImageIOBase subclasses
   * ignore these methods. */
  itkSetEnumMacro(ByteOrder, ByteOrder);
  itkGetEnumMacro(ByteOrder, ByteOrder);
  void SetByteOrderToBigEndian()
  {
    this->SetByteOrder(BigEndian);
  }

  void SetByteOrderToLittleEndian()
  {
    this->SetByteOrder(LittleEndian);
  }

  /** Convenience method returns the FileType as a string. This can be
   * used for writing output files. */
  std::string GetFileTypeAsString(FileType) const;

  /** Convenience method returns the ByteOrder as a string. This can be
   * used for writing output files. */
  std::string GetByteOrderAsString(ByteOrder) const;

  /** Type for representing size of bytes, and or positions along a file */
  typedef ::itk::intmax_t          SizeType;

  /** Type for representing size of bytes, and or positions along a memory
    buffer */
  typedef ::itk::OffsetValueType   BufferSizeType;

  /** Convenient method for accessing the number of bytes to get to
   * the next pixel. Returns m_Strides[1];
   *
   * Please note that this methods depends the private methods
   * ComputeStrides being called, otherwise this is the incorrect value.
   */
  virtual SizeType GetPixelStride() const;

  /** Return the number of pixels in the image. */
  SizeType GetImageSizeInPixels() const;

  /** Return the number of bytes in the image. */
  SizeType GetImageSizeInBytes() const;

  /** Return the number of pixels times the number
   * of components in the image. */
  SizeType GetImageSizeInComponents() const;

  /** Compute the size (in bytes) of the components of a pixel. For
   * example, and RGB pixel of unsigned char would have a
   * component size of 1 byte. This method can be invoked only after
   * the component type is set. */
  virtual unsigned int GetComponentSize() const;

  /*-------- This part of the interfaces deals with reading data ----- */

  /** Determine the file type. Returns true if this ImageIO can read the
   * file specified. */
  virtual bool CanReadFile(const char *) = 0;

  /** Determine if the ImageIO can stream reading from the
      current settings. Default is false. If this is queried after
      the header of the file has been read then it will indicate if
      that file can be streamed */
  virtual bool CanStreamRead()
  {
    return false;
  }

  /** Read the spacing and dimensions of the image.
   * Assumes SetFileName has been called with a valid file name. */
  virtual void ReadImageInformation() = 0;

  /** Reads the data from disk into the memory buffer provided. */
  virtual void Read(void *buffer) = 0;

  /*-------- This part of the interfaces deals with writing data ----- */

  /** Determine the file type. Returns true if this ImageIO can read the
   * file specified. */
  virtual bool CanWriteFile(const char *)  = 0;

  /** Determine if the ImageIO can stream write from the
   *  current settings.
   *
   * There are two types of non exclusive streaming: pasteing subregions, and iterative
   *
   */
  virtual bool CanStreamWrite()
  {
    return false;
  }

  /** Writes the spacing and dimensions of the image.
   * Assumes SetFileName has been called with a valid file name. */
  virtual void WriteImageInformation() = 0;

  /** Writes the data to disk from the memory buffer provided. Make sure
   * that the IORegions has been set properly. The buffer is cast to a
   * pointer to the beginning of the image data. */
  virtual void Write(const void *buffer) = 0;

  /* --- Support reading and writing data as a series of files. --- */

  /** The different types of ImageIO's can support data of varying
   * dimensionality. For example, some file formats are strictly 2D
   * while others can support 2D, 3D, or even n-D. This method returns
   * true/false as to whether the ImageIO can support the dimension
   * indicated. */
  virtual bool SupportsDimension(unsigned long dim)
  {
    return ( dim == 2 );
  }

  /** Method for supporting streaming.  Given a requested region, determine what
   * could be the region that we can read from the file. This is called the
   * streamable region, which will be equal or smaller than the
   * LargestPossibleRegion (unless it was dimensionaly clipped) and
   * greater or equal to the RequestedRegion
   *
   * the resulting IORegion may be a greater dimensions the the
   * requested IORegion, if the the derived class is unable to read
   * the requested region. For example if the file has a size of [ 10,
   * 10, 10] but the requested region is [10, 10] the return may be 3 dimensions.
   */
  virtual ImageIORegion
  GenerateStreamableReadRegionFromRequestedRegion(const ImageIORegion & requested) const;

  /** Before this method is called all the configuration will be done,
   * that is Streaming/PasteRegion/Compression/Filename etc
   * If pasting is being used the number of requested splits is for that
   * region not the largest. The derived ImageIO class should verify that
   * the file is capable of being written with this configuration.
   * If pasted is enabled and is not support or does not work with the file,
   * then an excepetion should be thrown.
   *
   * The default implementation depends on CanStreamWrite.
   * If false then 1 is returned (unless pasting is indicated), so that the whole file will be updated in one region.
   * If true then its assumed that any arbitrary region can be written
   * to any file. So the users request will be respected. If a derived
   * class has more restictive conditions then they should be checked
   */
  virtual unsigned int GetActualNumberOfSplitsForWriting(unsigned int numberOfRequestedSplits,
                                                         const ImageIORegion & pasteRegion,
                                                         const ImageIORegion & largestPossibleRegion);

  /** returns the ith IORegion
   *
   * numberOfActualSplits should be the value returned from GetActualNumberOfSplitsForWriting with the same parameters
   *
   * Derieved classes should overload this method to return a compatible region
   */
  virtual ImageIORegion GetSplitRegionForWriting(unsigned int ithPiece,
                                                 unsigned int numberOfActualSplits,
                                                 const ImageIORegion & pasteRegion,
                                                 const ImageIORegion & largestPossibleRegion);

  /** Type for the list of strings to be used for extensions.  */
  typedef  std::vector< std::string > ArrayOfExtensionsType;

  /** This method returns an array with the list of filename extensions
   * supported for reading by this ImageIO class. This is intended to
   * facilitate GUI and application level integration.
   */
  const ArrayOfExtensionsType & GetSupportedReadExtensions() const;

  /** This method returns an array with the list of filename extensions
   * supported for writing by this ImageIO class. This is intended to
   * facilitate GUI and application level integration.
   */
  const ArrayOfExtensionsType & GetSupportedWriteExtensions() const;

  template <typename TPixel>
    void SetTypeInfo(const TPixel *);

  /** Map between C++ Pixel type and ImageIOBase ComponentType */
  template <typename TPixel>
    struct MapPixelType
  {
    static const IOComponentType CType =
      UNKNOWNCOMPONENTTYPE;
  };
  template <typename TPixel>
    void SetPixelTypeInfo(const TPixel *)
  {
    this->SetNumberOfComponents(1);
    this->SetPixelType(SCALAR);
    this->SetComponentType(MapPixelType<TPixel>::CType);
  }
  template <typename TPixel>
    void SetPixelTypeInfo(const RGBPixel< TPixel > *)
  {
    this->SetNumberOfComponents(3);
    this->SetPixelType(RGB);
    this->SetComponentType(MapPixelType<TPixel>::CType);
  }
  template <typename TPixel>
    void SetPixelTypeInfo(const RGBAPixel< TPixel > *)
  {
    this->SetNumberOfComponents(4);
    this->SetPixelType(RGBA);
    this->SetComponentType(MapPixelType<TPixel>::CType);
  }
  template <typename TPixel, unsigned VLength>
    void SetPixelTypeInfo(const Vector< TPixel , VLength > *)
  {
    this->SetNumberOfComponents(VLength);
    this->SetPixelType(VECTOR);
    this->SetComponentType(MapPixelType<TPixel>::CType);
  }
  template <typename TPixel>
    void SetPixelTypeInfo(const VariableLengthVector< TPixel > *)
  {
    this->SetNumberOfComponents(1);
    this->SetPixelType(VECTOR);
    this->SetComponentType(MapPixelType<TPixel>::CType);
  }
  template <typename TPixel, unsigned VLength>
    void SetPixelTypeInfo(const CovariantVector< TPixel,VLength > *)
  {
    this->SetNumberOfComponents(VLength);
    this->SetPixelType(COVARIANTVECTOR);
    this->SetComponentType(MapPixelType<TPixel>::CType);
  }
  template <typename TPixel,unsigned VLength>
    void SetPixelTypeInfo(const FixedArray< TPixel,VLength > *)
  {
    this->SetNumberOfComponents(VLength);
    this->SetPixelType(COVARIANTVECTOR);
    this->SetComponentType(MapPixelType<TPixel>::CType);
  }

  template <typename TPixel, unsigned VLength>
    void SetPixelTypeInfo(const SymmetricSecondRankTensor<TPixel,VLength> *)
  {
    this->SetNumberOfComponents(VLength * (VLength + 1) / 2 );
    this->SetPixelType(SYMMETRICSECONDRANKTENSOR);
    this->SetComponentType(MapPixelType<TPixel>::CType);
  }

  template <typename TPixel>
    inline void SetPixelTypeInfo(const DiffusionTensor3D< TPixel > *)
  {
    this->SetNumberOfComponents(6);
    this->SetPixelType(DIFFUSIONTENSOR3D);
    this->SetComponentType(MapPixelType<TPixel>::CType);
    }

  template <typename TPixel, unsigned VLength>
    void SetPixelTypeInfo(const Matrix< TPixel,VLength, VLength > *)
  {
    this->SetNumberOfComponents(VLength * VLength);
    this->SetPixelType(MATRIX);
    this->SetComponentType(MapPixelType<TPixel>::CType);
  }

  template <typename TPixel>
    void SetPixelTypeInfo(const std::complex< TPixel > *)
  {
    this->SetNumberOfComponents(2);
    this->SetPixelType(COMPLEX);
    this->SetComponentType(MapPixelType<TPixel>::CType);
  }

  template <unsigned VLength>
    void SetPixelTypeInfo(const Offset< VLength > *)
  {
    this->SetNumberOfComponents(VLength);
    this->SetPixelType(ImageIOBase::OFFSET);
    this->SetComponentType(ImageIOBase::LONG);
  }

protected:
  ImageIOBase();
  ~ImageIOBase();
  void PrintSelf(std::ostream & os, Indent indent) const;

  virtual const ImageRegionSplitterBase* GetImageRegionSplitter(void) const;

  /** Used internally to keep track of the type of the pixel. */
  IOPixelType m_PixelType;

  /** Used internally to keep track of the type of the component. It is set
   * when ComputeStrides() is invoked. */
  IOComponentType m_ComponentType;

  /** Big or Little Endian, and the type of the file. (May be ignored.) */
  ByteOrder m_ByteOrder;

  FileType m_FileType;

  /** Does the ImageIOBase object have enough info to be of use? */
  bool m_Initialized;

  /** Filename to read */
  std::string m_FileName;

  /** Stores the number of components per pixel. This will be 1 for
   * grayscale images, 3 for RGBPixel images, and 4 for RGBPixelA images. */
  unsigned int m_NumberOfComponents;

  /** The number of independent dimensions in the image. */
  unsigned int m_NumberOfDimensions;

  /** Should we compress the data? */
  bool m_UseCompression;

  /** Should we use streaming for reading */
  bool m_UseStreamedReading;

  /** Should we use streaming for writing */
  bool m_UseStreamedWriting;

  /** The region to read or write. The region contains information about the
   * data within the region to read or write. */
  ImageIORegion m_IORegion;

  /** The array which stores the number of pixels in the x, y, z directions. */
  std::vector< SizeValueType > m_Dimensions;

  /** The array which stores the spacing of pixels in the
   * x, y, z directions. */
  std::vector< double > m_Spacing;

  /** The array which stores the origin of the image. */
  std::vector< double > m_Origin;

  /** The arrays which store the direction cosines of the image. */
  std::vector< std::vector< double > > m_Direction;

  /** Stores the number of bytes it takes to get to the next 'thing'
   * e.g. component, pixel, row, slice, etc. */
  std::vector< SizeType > m_Strides;

  /** Return the object to an initialized state, ready to be used */
  virtual void Reset(const bool freeDynamic = true);

  /** Resize the ImageIOBase object to new dimensions. */
  void Resize(const unsigned int numDimensions,
              const unsigned int *dimensions);

  /** Compute the size (in bytes) of the pixel. For
   * example, and RGB pixel of unsigned char would have size 3 bytes. */
  virtual unsigned int GetPixelSize() const;

  /** Calculates the different strides (distance from one thing to the next).
   * Upon return,
   * strides[0] = bytes to get to the next component of a pixel,
   * strides[1] = bytes to get to the next pixel in x direction,
   * strides[2] = bytes to get to the next row in y direction,
   * strides[3] = bytes to get to the next slice in z direction, etc. */
  void ComputeStrides();

  /** Convenient method for accessing number of bytes to get to the next pixel
   * component. Returns m_Strides[0]. */
  SizeType GetComponentStride() const;

  /** Convenient method for accessing the number of bytes to get to the
   * next row. Returns m_Strides[2]. */
  SizeType GetRowStride() const;

  /** Convenient method for accessing the number of bytes to get to the
   * next slice. Returns m_Strides[3]. */
  SizeType GetSliceStride() const;

  /** Convenient method to write a buffer as ASCII text. */
  virtual void WriteBufferAsASCII(std::ostream & os, const void *buffer,
                          IOComponentType ctype,
                          SizeType numberOfBytesToWrite);

  /** Convenient method to read a buffer as ASCII text. */
  virtual void ReadBufferAsASCII(std::istream & os, void *buffer,
                         IOComponentType ctype,
                         SizeType numberOfBytesToBeRead);

  /** Convenient method to read a buffer as binary. Return true on success. */
  bool ReadBufferAsBinary(std::istream & os, void *buffer, SizeType numberOfBytesToBeRead);

  /** Insert an extension to the list of supported extensions for reading. */
  void AddSupportedReadExtension(const char *extension);

  /** Insert an extension to the list of supported extensions for writing. */
  void AddSupportedWriteExtension(const char *extension);

  /** an implementation of ImageRegionSplitter:GetNumberOfSplits
   */
  virtual unsigned int GetActualNumberOfSplitsForWritingCanStreamWrite(unsigned int numberOfRequestedSplits,
                                                                       const ImageIORegion & pasteRegion) const;

  /** an implementation of  ImageRegionSplitter:GetSplit
   */
  virtual ImageIORegion GetSplitRegionForWritingCanStreamWrite(unsigned int ithPiece,
                                                               unsigned int numberOfActualSplits,
                                                               const ImageIORegion & pasteRegion) const;

private:
  ImageIOBase(const Self &);    //purposely not implemented
  void operator=(const Self &); //purposely not implemented

  ArrayOfExtensionsType m_SupportedReadExtensions;
  ArrayOfExtensionsType m_SupportedWriteExtensions;
};

#define IMAGEIOBASE_TYPEMAP(type,ctype)                         \
  template <> struct ImageIOBase::MapPixelType<type>    \
  {                                                     \
    static const IOComponentType CType = ctype; \
  }

IMAGEIOBASE_TYPEMAP(char, CHAR);
IMAGEIOBASE_TYPEMAP(unsigned char, UCHAR);
IMAGEIOBASE_TYPEMAP(short, SHORT);
IMAGEIOBASE_TYPEMAP(unsigned short, USHORT);
IMAGEIOBASE_TYPEMAP(int, INT);
IMAGEIOBASE_TYPEMAP(unsigned int, UINT);
IMAGEIOBASE_TYPEMAP(long, LONG);
IMAGEIOBASE_TYPEMAP(unsigned long, ULONG);
IMAGEIOBASE_TYPEMAP(float, FLOAT);
IMAGEIOBASE_TYPEMAP(double, DOUBLE);
#undef IMAGIOBASE_TYPEMAP


} // end namespace itk

#endif // __itkImageIOBase_h