/usr/include/ITK-4.5/itkImagePCAShapeModelEstimator.h is in libinsighttoolkit4-dev 4.5.0-3.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 | /*=========================================================================
*
* Copyright Insight Software Consortium
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0.txt
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
*=========================================================================*/
#ifndef __itkImagePCAShapeModelEstimator_h
#define __itkImagePCAShapeModelEstimator_h
#include <ctime>
#include <cmath>
#include <cfloat>
#include "vnl/vnl_vector.h"
#include "vnl/vnl_matrix.h"
#include "vnl/vnl_math.h"
#include "vnl/algo/vnl_matrix_inverse.h"
#include "itkImageRegionIterator.h"
#include "itkMacro.h"
#include "itkImageShapeModelEstimatorBase.h"
#include "itkConceptChecking.h"
#include "itkImage.h"
#include "vnl/algo/vnl_generalized_eigensystem.h"
#include "vnl/algo/vnl_symmetric_eigensystem.h"
namespace itk
{
/** \class ImagePCAShapeModelEstimator
* \brief Base class for ImagePCAShapeModelEstimator object
*
* itkImagePCAShapeModelEstimator performs a principal component analysis
* (PCA) on a set of images. The user specifies the number of training images
* and also the number of desired largest principal components needed.
* The ITK pipeline mechanism sets up the storage for both input and output
* images. The number of output images are the user specified number of desired
* largest principal components plus 1 (for the mean image).
*
* The algorithm uses the VNL library to perform the eigen analysis. To speed
* the computation of the instead of performing the eigen analysis of the
* covariance vector A*A' where A is a matrix with p x t, p = number of
* pixels or voxels in each images and t = number of training images, we
* calculate the eigen vectors of the inner product matrix A'*A. The resulting
* eigen vectors (E) are then multiplied with the the matrix A to get the
* principal compoenets. The covariance matrix has a dimension of p x p. Since
* number of pixels in any image being typically very high the eigen
* decomposition becomes computationally expensive. The inner product on the
* other hand has the dimension of t x t, where t is typically much smaller
* that p. Hence the eigen decomposition (most compute intensive part) is an
* orders of magnitude faster.
*
* The Update() function enables the calculation of the various models, creates
* the membership function objects and populates them.
*
* \ingroup ImageFeatureExtraction
* \ingroup ITKImageStatistics
*
* \wiki
* \wikiexample{Segmentation/EstimatePCAModel,Compute a PCA shape model from a training sample}
* \endwiki
*/
template< typename TInputImage,
typename TOutputImage = Image< double, TInputImage::ImageDimension > >
class ImagePCAShapeModelEstimator:
public ImageShapeModelEstimatorBase< TInputImage, TOutputImage >
{
public:
/** Standard class typedefs. */
typedef ImagePCAShapeModelEstimator Self;
typedef ImageShapeModelEstimatorBase< TInputImage, TOutputImage > Superclass;
typedef SmartPointer< Self > Pointer;
typedef SmartPointer< const Self > ConstPointer;
/** Method for creation through the object factory. */
itkNewMacro(Self);
/** Run-time type information (and related methods). */
itkTypeMacro(ImagePCAShapeModelEstimator, ImageShapeModelEstimatorBase);
/** Type definition for the input image. */
typedef TInputImage InputImageType;
typedef typename TInputImage::Pointer InputImagePointer;
typedef typename TInputImage::ConstPointer InputImageConstPointer;
/** Type definition for the input image pixel type. */
typedef typename TInputImage::PixelType InputImagePixelType;
/** Type definition for the input image iterator type. */
typedef ImageRegionIterator< TInputImage > InputImageIterator;
typedef ImageRegionConstIterator< TInputImage > InputImageConstIterator;
/** Input Image dimension */
itkStaticConstMacro(InputImageDimension, unsigned int,
TInputImage::ImageDimension);
/** Type definition for the output image */
typedef TOutputImage OutputImageType;
typedef typename TOutputImage::Pointer OutputImagePointer;
/** Type definition for the input image iterator type. */
typedef ImageRegionIterator< TOutputImage > OutputImageIterator;
/** Type definition for a double matrix. */
typedef vnl_matrix< double > MatrixOfDoubleType;
/** Type definition for an integer vector. */
typedef vnl_matrix< int > MatrixOfIntegerType;
/** Type definition for a double vector. */
typedef vnl_vector< double > VectorOfDoubleType;
/** Set/Get the number of required largest principal components. The
* filter produces the required number of principal components plus
* one outputs. Output index 0 represents the mean image and the
* remaining outputs the requested principal components. */
virtual void SetNumberOfPrincipalComponentsRequired(unsigned int n);
itkGetConstMacro(NumberOfPrincipalComponentsRequired, unsigned int);
/** Set/Get the number of training images in the input. */
virtual void SetNumberOfTrainingImages(unsigned int n);
itkGetConstMacro(NumberOfTrainingImages, unsigned int);
/** Get the eigen values */
itkGetConstMacro(EigenValues, VectorOfDoubleType);
protected:
ImagePCAShapeModelEstimator();
~ImagePCAShapeModelEstimator();
virtual void PrintSelf(std::ostream & os, Indent indent) const;
/** This filter must produce all of the outputs at once, as such it
* must override the EnlargeOutputRequestedRegion method to enlarge the
* output request region. */
virtual void EnlargeOutputRequestedRegion(DataObject *);
/** This filter requires all the input image at once, as such it
* must override the GenerateInputRequestedRegion method. Additionally,
* this filter assumes that the input images are at least the size as
* the first input image. */
virtual void GenerateInputRequestedRegion();
/** Starts the image modelling process */
void GenerateData();
private:
ImagePCAShapeModelEstimator(const Self &); //purposely not implemented
void operator=(const Self &); //purposely not implemented
/** Local variable typedefs */
typedef std::vector< InputImageConstPointer > InputImagePointerArray;
typedef std::vector< InputImageConstIterator > InputImageIteratorArray;
typedef typename TInputImage::SizeType ImageSizeType;
/** Set up the vector to store the image data. */
typedef typename TInputImage::PixelType InputPixelType;
/** Local functions */
/** A function that generates the cluster centers (model) corresponding to the
* estimates of the cluster centers (in the initial codebook).
* If no codebook is provided, then use the number of classes to
* determine the cluster centers or the Shape model. This is the
* the base function to call the K-means classifier. */
virtual void EstimateShapeModels();
void EstimatePCAShapeModelParameters();
void CalculateInnerProduct();
/** Local storage variables */
InputImageIteratorArray m_InputImageIteratorArray;
VectorOfDoubleType m_Means;
MatrixOfDoubleType m_InnerProduct;
MatrixOfDoubleType m_EigenVectors;
VectorOfDoubleType m_EigenValues;
VectorOfDoubleType m_EigenVectorNormalizedEnergy;
ImageSizeType m_InputImageSize;
unsigned int m_NumberOfPixels;
// The number of input images for PCA
unsigned int m_NumberOfTrainingImages;
// The number of output Principal Components
unsigned int m_NumberOfPrincipalComponentsRequired;
}; // class ImagePCAShapeModelEstimator
} // namespace itk
#ifndef ITK_MANUAL_INSTANTIATION
#include "itkImagePCAShapeModelEstimator.hxx"
#endif
#endif
|