This file is indexed.

/usr/include/ITK-4.5/itkImagePCAShapeModelEstimator.hxx is in libinsighttoolkit4-dev 4.5.0-3.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
/*=========================================================================
 *
 *  Copyright Insight Software Consortium
 *
 *  Licensed under the Apache License, Version 2.0 (the "License");
 *  you may not use this file except in compliance with the License.
 *  You may obtain a copy of the License at
 *
 *         http://www.apache.org/licenses/LICENSE-2.0.txt
 *
 *  Unless required by applicable law or agreed to in writing, software
 *  distributed under the License is distributed on an "AS IS" BASIS,
 *  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 *  See the License for the specific language governing permissions and
 *  limitations under the License.
 *
 *=========================================================================*/
#ifndef __itkImagePCAShapeModelEstimator_hxx
#define __itkImagePCAShapeModelEstimator_hxx

#include "itkImagePCAShapeModelEstimator.h"

namespace itk
{
template< typename TInputImage, typename TOutputImage >
ImagePCAShapeModelEstimator< TInputImage, TOutputImage >
::ImagePCAShapeModelEstimator(void):m_NumberOfPixels(0), m_NumberOfTrainingImages(0)
{
  m_EigenVectors.set_size(0, 0);
  m_EigenValues.set_size(0);

  m_NumberOfPrincipalComponentsRequired = 0;
  this->SetNumberOfPrincipalComponentsRequired(1);
}

template< typename TInputImage, typename TOutputImage >
ImagePCAShapeModelEstimator< TInputImage, TOutputImage >
::~ImagePCAShapeModelEstimator(void)
{}

/**
 * PrintSelf
 */
template< typename TInputImage, typename TOutputImage >
void
ImagePCAShapeModelEstimator< TInputImage, TOutputImage >
::PrintSelf(std::ostream & os, Indent indent) const
{
  os << indent << "                   " << std::endl;
  os << indent << "Shape Models " << std::endl;
  os << indent << "Results printed in the superclass " << std::endl;
  os << indent << "                   " << std::endl;

  Superclass::PrintSelf(os, indent);

  itkDebugMacro(<< "                                    ");
  itkDebugMacro(<< "Results of the shape model algorithms");
  itkDebugMacro(<< "====================================");

  itkDebugMacro(<< "The eigen values new method are: ");

  itkDebugMacro(<< m_EigenValues);
  itkDebugMacro(<< m_EigenVectorNormalizedEnergy);

  itkDebugMacro(<< " ");
  itkDebugMacro(<< "==================   ");

  itkDebugMacro(<< "The eigen vectors new method are: ");

  for ( unsigned int i = 0; i < m_EigenValues.size(); i++ )
    {
    itkDebugMacro( << m_EigenVectors.get_row(i) );
    }

  itkDebugMacro(<< " ");
  itkDebugMacro(<< "+++++++++++++++++++++++++");

  // Print out ivars
  os << indent << "NumberOfPrincipalComponentsRequired: ";
  os << m_NumberOfPrincipalComponentsRequired << std::endl;
  os << indent << "NumberOfTrainingImages: ";
  os << m_NumberOfTrainingImages << std::endl;
} // end PrintSelf

/**
 * Enlarge the output requested region to the largest possible region.
 */
template< typename TInputImage, typename TOutputImage >
void
ImagePCAShapeModelEstimator< TInputImage, TOutputImage >
::EnlargeOutputRequestedRegion( DataObject *itkNotUsed(output) )
{
  // this filter requires the all of the output images to be in
  // the buffer
  for ( unsigned int idx = 0; idx < this->GetNumberOfIndexedOutputs(); ++idx )
    {
    if ( this->GetOutput(idx) )
      {
      this->GetOutput(idx)->SetRequestedRegionToLargestPossibleRegion();
      }
    }
}

/**
 * Requires all of the inputs to be in the buffer up to the
 * LargestPossibleRegion of the first input.
 */
template< typename TInputImage, typename TOutputImage >
void
ImagePCAShapeModelEstimator< TInputImage, TOutputImage >
::GenerateInputRequestedRegion()
{
  Superclass::GenerateInputRequestedRegion();

  if ( this->GetInput(0) )
    {
    // Set the requested region of the first input to largest possible region
    InputImagePointer input = const_cast< TInputImage * >( this->GetInput(0) );
    input->SetRequestedRegionToLargestPossibleRegion();

    // Set the requested region of the remaining input to the largest possible
    // region of the first input
    unsigned int idx;
    for ( idx = 1; idx < this->GetNumberOfIndexedInputs(); ++idx )
      {
      if ( this->GetInput(idx) )
        {
        typename TInputImage::RegionType requestedRegion =
          this->GetInput(0)->GetLargestPossibleRegion();

        typename TInputImage::RegionType largestRegion =
          this->GetInput(idx)->GetLargestPossibleRegion();

        if ( !largestRegion.IsInside(requestedRegion) )
          {
          itkExceptionMacro(
            "LargestPossibleRegion of input " << idx
                                              <<
            " is not a superset of the LargestPossibleRegion of input 0");
          }

        InputImagePointer ptr = const_cast< TInputImage * >( this->GetInput(idx) );
        ptr->SetRequestedRegion(requestedRegion);
        } // if ( this->GetIntput(idx))
      }   // for idx
    }     // if( this->GetInput(0) )
}

/**
 * Generate data (start the model building process)
 */
template< typename TInputImage, typename TOutputImage >
void
ImagePCAShapeModelEstimator< TInputImage, TOutputImage >
::GenerateData()
{
  this->EstimateShapeModels();

  // Allocate memory for each output.
  unsigned int numberOfOutputs =
    static_cast< unsigned int >( this->GetNumberOfIndexedOutputs() );

  InputImagePointer input = const_cast< TInputImage * >( this->GetInput(0) );
  unsigned int      j;
  for ( j = 0; j < numberOfOutputs; j++ )
    {
    OutputImagePointer output = this->GetOutput(j);
    output->SetBufferedRegion( output->GetRequestedRegion() );
    output->Allocate();
    }

  // Fill the output images.
  VectorOfDoubleType m_OneEigenVector;
  typedef ImageRegionIterator< OutputImageType > OutputIterator;

  //Fill the mean image first

  typename OutputImageType::RegionType region = this->GetOutput(0)->GetRequestedRegion();
  OutputIterator outIter(this->GetOutput(0), region);

  unsigned int i = 0;
  outIter.GoToBegin();
  while ( !outIter.IsAtEnd() )
    {
    outIter.Set( static_cast< typename OutputImageType::PixelType >( m_Means[i] ) );
    ++outIter;
    ++i;
    }

  //Now fill the principal component outputs
  unsigned int kthLargestPrincipalComp = m_NumberOfTrainingImages;
  unsigned int numberOfValidOutputs =
    vnl_math_min(numberOfOutputs, m_NumberOfTrainingImages + 1);

  for ( j = 1; j < numberOfValidOutputs; j++ )
    {
    //Extract one column vector at a time
    m_OneEigenVector = m_EigenVectors.get_column(kthLargestPrincipalComp - 1);

    region = this->GetOutput(j)->GetRequestedRegion();
    OutputIterator outIterJ(this->GetOutput(j), region);

    unsigned int idx = 0;
    outIterJ.GoToBegin();
    while ( !outIterJ.IsAtEnd() )
      {
      outIterJ.Set( static_cast< typename OutputImageType::PixelType >(
                      m_OneEigenVector[idx] ) );
      ++outIterJ;
      ++idx;
      }

    //Decrement to get the next principal component
    --kthLargestPrincipalComp;
    }

  // Fill extraneous outputs with zero
  for (; j < numberOfOutputs; j++ )
    {
    region = this->GetOutput(j)->GetRequestedRegion();
    OutputIterator outIterJ(this->GetOutput(j), region);

    outIterJ.GoToBegin();
    while ( !outIterJ.IsAtEnd() )
      {
      outIterJ.Set(0);
      ++outIterJ;
      }
    }
} // end Generate data

/**
 * Set the number of required principal components
 */
template< typename TInputImage, typename TOutputImage >
void
ImagePCAShapeModelEstimator< TInputImage, TOutputImage >
::SetNumberOfPrincipalComponentsRequired(unsigned int n)
{
  if ( m_NumberOfPrincipalComponentsRequired != n )
    {
    m_NumberOfPrincipalComponentsRequired = n;

    this->Modified();

    // Modify the required number of outputs ( 1 extra for the mean image )
    this->SetNumberOfRequiredOutputs(m_NumberOfPrincipalComponentsRequired + 1);

    unsigned int numberOfOutputs = static_cast< unsigned int >( this->GetNumberOfIndexedOutputs() );
    unsigned int idx;

    if ( numberOfOutputs < m_NumberOfPrincipalComponentsRequired + 1 )
      {
      // Make and add extra outputs
      for ( idx = numberOfOutputs; idx <= m_NumberOfPrincipalComponentsRequired; idx++ )
        {
        typename DataObject::Pointer output = this->MakeOutput(idx);
        this->SetNthOutput( idx, output.GetPointer() );
        }
      }
    else if ( numberOfOutputs > m_NumberOfPrincipalComponentsRequired + 1 )
      {
      // Remove the extra outputs
      for ( idx = numberOfOutputs - 1; idx >= m_NumberOfPrincipalComponentsRequired + 1; idx-- )
        {
        this->RemoveOutput(idx);
        }
      }
    }
}

/**
 * Set the number of training images.
 */
template< typename TInputImage, typename TOutputImage >
void
ImagePCAShapeModelEstimator< TInputImage, TOutputImage >
::SetNumberOfTrainingImages(unsigned int n)
{
  if ( m_NumberOfTrainingImages != n )
    {
    m_NumberOfTrainingImages = n;

    this->Modified();

    // Modify the required number of inputs
    this->SetNumberOfRequiredInputs(m_NumberOfTrainingImages);
    }
}

/**-----------------------------------------------------------------
 * Takes a set of training images and returns the means
 * and variance of the various classes defined in the
 * training set.
 */
template< typename TInputImage, typename TOutputImage >
void
ImagePCAShapeModelEstimator< TInputImage, TOutputImage >
::EstimateShapeModels()
{
  this->CalculateInnerProduct();

  this->EstimatePCAShapeModelParameters();
} // end EstimateShapeModels

/**
 * Calculate the inner product between the input training vector
 * where each image is treated as a vector of n-elements
 */
template< typename TInputImage, typename TOutputImage >
void
ImagePCAShapeModelEstimator< TInputImage, TOutputImage >
::CalculateInnerProduct()
{
  // Get the pointers to the input images and initialize the iterators
  // We use dynamic_cast since inputs are stored as DataObjects.  The
  // ImageToImageFilter::GetInput(int) always returns a pointer to a
  // TInputImage1 so it cannot be used for the second input.

  InputImagePointerArray inputImagePointerArray(m_NumberOfTrainingImages);

  m_InputImageIteratorArray.resize(m_NumberOfTrainingImages);

  for ( unsigned int i = 0; i < m_NumberOfTrainingImages; i++ )
    {
    InputImageConstPointer inputImagePtr =
      dynamic_cast< const TInputImage * >( ProcessObject::GetInput(i) );

    inputImagePointerArray[i] = inputImagePtr;

    InputImageConstIterator inputImageIt( inputImagePtr, inputImagePtr->GetBufferedRegion() );

    m_InputImageIteratorArray[i] = inputImageIt;

    m_InputImageIteratorArray[i].GoToBegin();
    }

  //-------------------------------------------------------------------
  // Set up the matrix to hold the inner product and the means from the
  // training data
  //-------------------------------------------------------------------
  m_InputImageSize = ( inputImagePointerArray[0] )->GetBufferedRegion().GetSize();

  m_NumberOfPixels = 1;
  for ( unsigned int i = 0; i < InputImageDimension; i++ )
    {
    m_NumberOfPixels *= m_InputImageSize[i];
    }

  //-------------------------------------------------------------------------
  //Calculate the Means
  //-------------------------------------------------------------------------
  m_Means.set_size(m_NumberOfPixels);
  m_Means.fill(0);

  InputImageConstIterator tempImageItA;

  for ( unsigned int img_number = 0; img_number < m_NumberOfTrainingImages; img_number++ )
    {
    tempImageItA = m_InputImageIteratorArray[img_number];

    for ( unsigned int band_x = 0; band_x < m_NumberOfPixels; band_x++ )
      {
      m_Means[band_x] += tempImageItA.Get();
      ++tempImageItA;
      }
    } // end: looping through the image
  //-------------------------------------------------------------------------

  m_Means /= m_NumberOfTrainingImages;

  //-------------------------------------------------------------------------
  // Calculate the inner product
  //-------------------------------------------------------------------------
  m_InnerProduct.set_size(m_NumberOfTrainingImages, m_NumberOfTrainingImages);
  m_InnerProduct.fill(0);

  InputImageConstIterator tempImageItB;

  //-------------------------------------------------------------------------
  for ( unsigned int band_x = 0; band_x < m_NumberOfTrainingImages; band_x++ )
    {
    for ( unsigned int band_y = 0; band_y <= band_x; band_y++ )
      {
      //Pointer to the vector (in original matrix)
      tempImageItA = m_InputImageIteratorArray[band_x];

      //Pointer to the vector in the transposed matrix
      tempImageItB = m_InputImageIteratorArray[band_y];

      for ( unsigned int pix_number = 0; pix_number < m_NumberOfPixels; pix_number++ )
        {
        m_InnerProduct[band_x][band_y] +=
          ( tempImageItA.Get() - m_Means[pix_number] )
          * ( tempImageItB.Get() - m_Means[pix_number] );

        ++tempImageItA;
        ++tempImageItB;
        } // end: looping through the image
      }   // end: band_y loop
    }     // end: band_x loop

  //---------------------------------------------------------------------
  // Fill the rest of the inner product matrix and make it symmetric
  //---------------------------------------------------------------------

  for ( unsigned int band_x = 0; band_x < ( m_NumberOfTrainingImages - 1 ); band_x++ )
    {
    for ( unsigned int band_y = band_x + 1; band_y < m_NumberOfTrainingImages; band_y++ )
      {
      m_InnerProduct[band_x][band_y] = m_InnerProduct[band_y][band_x];
      } // end band_y loop
    }   // end band_x loop

  if ( ( m_NumberOfTrainingImages - 1 ) != 0 )
    {
    m_InnerProduct /= ( m_NumberOfTrainingImages - 1 );
    }
  else
    {
    m_InnerProduct.fill(0);
    }
} // end CalculateInnerProduct

/*-----------------------------------------------------------------
 *Estimage shape models using PCA.
 *-----------------------------------------------------------------
 */
template< typename TInputImage, typename TOutputImage >
void
ImagePCAShapeModelEstimator< TInputImage, TOutputImage >
::EstimatePCAShapeModelParameters()
{
  MatrixOfDoubleType identityMatrix(m_NumberOfTrainingImages, m_NumberOfTrainingImages);

  identityMatrix.set_identity();

  vnl_generalized_eigensystem eigenVectors_eigenValues(m_InnerProduct, identityMatrix);

  MatrixOfDoubleType eigenVectorsOfInnerProductMatrix = eigenVectors_eigenValues.V;

  //--------------------------------------------------------------------
  //Calculate the principal shape variations
  //
  //m_EigenVectors capture the principal shape variantions
  //m_EigenValues capture the relative weight of each variation
  //Multiply original image vetors with the eigenVectorsOfInnerProductMatrix
  //to derive the principal shapes.
  //--------------------------------------------------------------------

  m_EigenVectors.set_size(m_NumberOfPixels, m_NumberOfTrainingImages);
  m_EigenVectors.fill(0);

  double                  pix_value;
  InputImageConstIterator tempImageItA;

  for ( unsigned int img_number = 0; img_number < m_NumberOfTrainingImages; img_number++ )
    {
    tempImageItA = m_InputImageIteratorArray[img_number];
    for ( unsigned int pix_number = 0; pix_number < m_NumberOfPixels; pix_number++ )
      {
      pix_value = tempImageItA.Get();
      for ( unsigned int vec_number = 0; vec_number < m_NumberOfTrainingImages; vec_number++ )
        {
        m_EigenVectors[pix_number][vec_number] +=
          ( pix_value * eigenVectorsOfInnerProductMatrix[img_number][vec_number] );
        }
      ++tempImageItA;
      }
    }

  m_EigenVectors.normalize_columns();

  m_EigenValues.set_size(m_NumberOfTrainingImages);

  //Extract the diagonal elements into the Eigen value vector
  m_EigenValues = ( eigenVectors_eigenValues.D ).diagonal();

  //Flip the eigen values since the eigen vectors output
  //is ordered in decending order of their corresponding eigen values.
  m_EigenValues.flip();

  //--------------------------------------------------------------------
  //Normalize the eigen values
  //--------------------------------------------------------------------

  m_EigenVectorNormalizedEnergy = m_EigenValues;
  m_EigenVectorNormalizedEnergy.normalize();
} // end EstimatePCAShapeModelParameters

//-----------------------------------------------------------------
} // namespace itk

#endif