/usr/include/ITK-4.5/itkImageRegistrationMethodv4.h is in libinsighttoolkit4-dev 4.5.0-3.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 | /*=========================================================================
*
* Copyright Insight Software Consortium
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0.txt
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
*=========================================================================*/
#ifndef __itkImageRegistrationMethodv4_h
#define __itkImageRegistrationMethodv4_h
#include "itkProcessObject.h"
#include "itkCompositeTransform.h"
#include "itkDataObjectDecorator.h"
#include "itkObjectToObjectMetricBase.h"
#include "itkObjectToObjectMultiMetricv4.h"
#include "itkObjectToObjectOptimizerBase.h"
#include "itkImageToImageMetricv4.h"
#include "itkShrinkImageFilter.h"
#include "itkTransform.h"
#include "itkTransformParametersAdaptor.h"
#include <vector>
namespace itk
{
/** \class ImageRegistrationMethodv4
* \brief Interface method for the current registration framework.
*
* This interface method class encapsulates typical registration
* usage by incorporating all the necessary elements for performing a
* simple image registration between two images. This method also
* allows for multistage registration whereby each stage is
* characterize by possibly different transforms of and different
* image metrics. For example, many users will want to perform
* a linear registration followed by deformable registration where
* both stages are performed in multiple levels. Each level can be
* characterized by:
*
* \li the resolution of the virtual domain image (see below)
* \li smoothing of the fixed and moving images
* \li the coarseness of the current transform via transform adaptors
* (see below)
*
* Multiple stages are handled by linking multiple instantiations of
* this class where the output transform is added to the optional
* composite transform input.
*
* Transform adaptors: To accommodate new changes to the current ITK
* registration framework, we introduced the concept of transform adaptors.
* Whereas each stage is associated with a moving and, possibly, fixed
* transform, each level of each stage is defined by a transform adaptor
* which describes how to adapt the transform to the current level. For
* example, if one were to use the B-spline transform during a deformable
* registration stage, common practice is to increase the resolution of
* the B-spline mesh (or, analogously, the control point grid size) at
* each level. At each level, one would define the parameters of the
* B-spline transform adaptor at that level which increases the resolution
* from the previous level. For many transforms, such as affine, this
* concept of an adaptor may be nonsensical. For this reason, the base
* transform adaptor class does not do anything to the transform but merely
* passes it through. Each level of each stage must define a transform
* adaptor but, by default, the base adaptor class is assigned which, again,
* does not do anything to the transform. A special mention should be made
* of the transform adaptor at level 0 of any stage. Most likely, the user
* will not want to do anything to the transform as it enters into the
* given stage so typical use will be to assign the base adaptor class to
* level 0 of all stages but we leave that open to the user.
*
* Output: The output is the updated transform.
*
* \author Nick Tustison
* \author Brian Avants
*
* \ingroup ITKRegistrationMethodsv4
*/
template<typename TFixedImage, typename TMovingImage, typename TOutputTransform, typename TVirtualImage = TFixedImage>
class ImageRegistrationMethodv4
:public ProcessObject
{
public:
/** Standard class typedefs. */
typedef ImageRegistrationMethodv4 Self;
typedef ProcessObject Superclass;
typedef SmartPointer<Self> Pointer;
typedef SmartPointer<const Self> ConstPointer;
/** Method for creation through the object factory. */
itkNewMacro( Self );
/** ImageDimension constants */
itkStaticConstMacro( ImageDimension, unsigned int, TFixedImage::ImageDimension );
/** Run-time type information (and related methods). */
itkTypeMacro( ImageRegistrationMethodv4, ProcessObject );
/** Input typedefs for the images and transforms. */
typedef TFixedImage FixedImageType;
typedef typename FixedImageType::Pointer FixedImagePointer;
typedef std::vector<FixedImagePointer> FixedImagesContainerType;
typedef TMovingImage MovingImageType;
typedef typename MovingImageType::Pointer MovingImagePointer;
typedef std::vector<MovingImagePointer> MovingImagesContainerType;
/** Metric and transform typedefs */
typedef TOutputTransform OutputTransformType;
typedef typename OutputTransformType::Pointer OutputTransformPointer;
typedef typename OutputTransformType::ScalarType RealType;
typedef typename OutputTransformType::DerivativeType DerivativeType;
typedef typename DerivativeType::ValueType DerivativeValueType;
typedef Transform<RealType, ImageDimension, ImageDimension> InitialTransformType;
typedef typename InitialTransformType::Pointer InitialTransformPointer;
typedef CompositeTransform<RealType, ImageDimension> CompositeTransformType;
typedef typename CompositeTransformType::Pointer CompositeTransformPointer;
typedef ObjectToObjectMetricBaseTemplate<RealType> MetricType;
typedef typename MetricType::Pointer MetricPointer;
typedef TVirtualImage VirtualImageType;
typedef ObjectToObjectMultiMetricv4<ImageDimension, ImageDimension, VirtualImageType, RealType> MultiMetricType;
typedef ImageToImageMetricv4<FixedImageType, MovingImageType, VirtualImageType, RealType> ImageMetricType;
/**
* Type for the output: Using Decorator pattern for enabling the transform to be
* passed in the data pipeline
*/
typedef DataObjectDecorator<OutputTransformType> DecoratedOutputTransformType;
typedef typename DecoratedOutputTransformType::Pointer DecoratedOutputTransformPointer;
typedef ShrinkImageFilter<FixedImageType, VirtualImageType> ShrinkFilterType;
typedef typename ShrinkFilterType::ShrinkFactorsType ShrinkFactorsPerDimensionContainerType;
typedef Array<SizeValueType> ShrinkFactorsArrayType;
typedef Array<RealType> SmoothingSigmasArrayType;
typedef Array<RealType> MetricSamplingPercentageArrayType;
/** Transform adaptor typedefs */
typedef TransformParametersAdaptor<OutputTransformType> TransformParametersAdaptorType;
typedef typename TransformParametersAdaptorType::Pointer TransformParametersAdaptorPointer;
typedef std::vector<TransformParametersAdaptorPointer> TransformParametersAdaptorsContainerType;
/** Type of the optimizer. */
typedef ObjectToObjectOptimizerBaseTemplate<RealType> OptimizerType;
typedef typename OptimizerType::Pointer OptimizerPointer;
/** Weights type for the optimizer. */
typedef typename OptimizerType::ScalesType OptimizerWeightsType;
/** enum type for metric sampling strategy */
enum MetricSamplingStrategyType { NONE, REGULAR, RANDOM };
typedef typename ImageMetricType::FixedSampledPointSetType MetricSamplePointSetType;
/** Set/get the fixed images. */
virtual void SetFixedImage( const FixedImageType *image )
{
this->SetFixedImage( 0, image );
}
virtual const FixedImageType * GetFixedImage() const
{
return this->GetFixedImage( 0 );
}
virtual void SetFixedImage( SizeValueType, const FixedImageType * );
virtual const FixedImageType * GetFixedImage( SizeValueType ) const;
/** Set the moving images. */
virtual void SetMovingImage( const MovingImageType *image )
{
this->SetMovingImage( 0, image );
}
virtual const MovingImageType * GetMovingImage() const
{
return this->GetMovingImage( 0 );
}
virtual void SetMovingImage( SizeValueType, const MovingImageType * );
virtual const MovingImageType * GetMovingImage( SizeValueType ) const;
/** Set/Get the optimizer. */
itkSetObjectMacro( Optimizer, OptimizerType );
itkGetModifiableObjectMacro( Optimizer, OptimizerType );
/**
* Set/Get the optimizer weights. Allows setting of a per-local-parameter
* weighting array. If unset, the weights are treated as identity. Weights
* are used to mask out a particular parameter during optimzation to hold
* it constant. Or they may be used to apply another kind of prior knowledge.
* The size of the weights must be equal to the number of the local transformation
* parameters.
*/
void SetOptimizerWeights( OptimizerWeightsType & );
itkGetConstMacro( OptimizerWeights, OptimizerWeightsType );
/** Set/Get the metric. */
itkSetObjectMacro( Metric, MetricType );
itkGetModifiableObjectMacro( Metric, MetricType );
/** Set/Get the metric sampling strategy. */
itkSetMacro( MetricSamplingStrategy, MetricSamplingStrategyType );
itkGetConstMacro( MetricSamplingStrategy, MetricSamplingStrategyType );
/** Set the metric sampling percentage. */
void SetMetricSamplingPercentage( const RealType );
/** Set the metric sampling percentage. */
itkSetMacro( MetricSamplingPercentagePerLevel, MetricSamplingPercentageArrayType );
itkGetConstMacro( MetricSamplingPercentagePerLevel, MetricSamplingPercentageArrayType );
/** Set/Get the initial fixed transform. */
itkSetObjectMacro( FixedInitialTransform, InitialTransformType );
itkGetModifiableObjectMacro( FixedInitialTransform, InitialTransformType );
/** Set/Get the initial moving transform. */
itkSetObjectMacro( MovingInitialTransform, InitialTransformType );
itkGetModifiableObjectMacro( MovingInitialTransform, InitialTransformType );
/** Set/Get the transform adaptors. */
void SetTransformParametersAdaptorsPerLevel( TransformParametersAdaptorsContainerType & );
const TransformParametersAdaptorsContainerType & GetTransformParametersAdaptorsPerLevel() const;
/**
* Set/Get the number of multi-resolution levels. In setting the number of
* levels we need to set the following for each level:
* \li shrink factors for the virtual domain
* \li sigma smoothing parameter
* \li transform adaptor with specific parameters for the specified level
*/
void SetNumberOfLevels( const SizeValueType );
itkGetConstMacro( NumberOfLevels, SizeValueType );
/**
* Set the shrink factors for each level where each level has a constant
* shrink factor for each dimension. For example, input to the function
* of factors = [4,2,1] will shrink the image in every dimension by 4
* the first level, then by 2 at the second level, then the original resolution
* for the final level (uses the \c itkShrinkImageFilter).
*/
void SetShrinkFactorsPerLevel( ShrinkFactorsArrayType factors )
{
for( unsigned int level = 0; level < factors.Size(); ++level )
{
ShrinkFactorsPerDimensionContainerType shrinkFactors;
shrinkFactors.Fill( factors[level] );
this->SetShrinkFactorsPerDimension( level, shrinkFactors );
}
}
/**
* Get the shrink factors for a specific level.
*/
ShrinkFactorsPerDimensionContainerType GetShrinkFactorsPerDimension( const unsigned int level ) const
{
if( level >= this->m_ShrinkFactorsPerLevel.size() )
{
itkExceptionMacro( "Requesting level greater than the number of levels." );
}
return this->m_ShrinkFactorsPerLevel[level];
}
/**
* Set the shrink factors for a specific level for each dimension.
*/
void SetShrinkFactorsPerDimension( unsigned int level, ShrinkFactorsPerDimensionContainerType factors )
{
if( level >= this->m_ShrinkFactorsPerLevel.size() )
{
this->m_ShrinkFactorsPerLevel.resize( level + 1 );
}
this->m_ShrinkFactorsPerLevel[level] = factors;
this->Modified();
}
/**
* Set/Get the smoothing sigmas for each level. At each resolution level, a gaussian smoothing
* filter (specifically, the \c itkDiscreteGaussianImageFilter) is applied. Sigma values are
* specified according to the option \c m_SmoothingSigmasAreSpecifiedInPhysicalUnits.
*/
itkSetMacro( SmoothingSigmasPerLevel, SmoothingSigmasArrayType );
itkGetConstMacro( SmoothingSigmasPerLevel, SmoothingSigmasArrayType );
/**
* Set/Get whether to specify the smoothing sigmas for each level in physical units
* (default) or in terms of voxels.
*/
itkSetMacro( SmoothingSigmasAreSpecifiedInPhysicalUnits, bool );
itkGetConstMacro( SmoothingSigmasAreSpecifiedInPhysicalUnits, bool );
itkBooleanMacro( SmoothingSigmasAreSpecifiedInPhysicalUnits );
/** Make a DataObject of the correct type to be used as the specified output. */
typedef ProcessObject::DataObjectPointerArraySizeType DataObjectPointerArraySizeType;
using Superclass::MakeOutput;
virtual DataObjectPointer MakeOutput( DataObjectPointerArraySizeType );
/** Returns the transform resulting from the registration process */
virtual const DecoratedOutputTransformType * GetOutput() const;
/** Get the current level. This is a helper function for reporting observations. */
itkGetConstMacro( CurrentLevel, SizeValueType );
/** Get the current iteration. This is a helper function for reporting observations. */
itkGetConstReferenceMacro( CurrentIteration, SizeValueType );
/* Get the current metric value. This is a helper function for reporting observations. */
itkGetConstReferenceMacro( CurrentMetricValue, RealType );
/** Get the current convergence value. This is a helper function for reporting observations. */
itkGetConstReferenceMacro( CurrentConvergenceValue, RealType );
/** Get the current convergence state per level. This is a helper function for reporting observations. */
itkGetConstReferenceMacro( IsConverged, bool );
#ifdef ITKV3_COMPATIBILITY
/** Method that initiates the registration. This will Initialize and ensure
* that all inputs the registration needs are in place, via a call to
* Initialize() will then start the optimization process via a call to
* StartOptimization()
* StartRegistration is an old API from before
* ImageRegistrationMethod was a subclass of ProcessObject.
* Historically, one could call StartRegistration() instead of
* calling Update(). However, when called directly by the user, the
* inputs to ImageRegistrationMethod may not be up to date. This
* may cause an unexpected behavior.
*
* Since we cannot eliminate StartRegistration for backward
* compatibility reasons, we check whether StartRegistration was
* called directly or whether Update() (which in turn called
* StartRegistration()). */
void StartRegistration(void) { this->Update(); }
#endif
protected:
ImageRegistrationMethodv4();
virtual ~ImageRegistrationMethodv4();
virtual void PrintSelf( std::ostream & os, Indent indent ) const;
/** Perform the registration. */
virtual void GenerateData();
/** Initialize by setting the interconnects between the components. */
virtual void InitializeRegistrationAtEachLevel( const SizeValueType );
/** Get metric samples. */
virtual void SetMetricSamplePoints();
SizeValueType m_CurrentLevel;
SizeValueType m_NumberOfLevels;
SizeValueType m_CurrentIteration;
RealType m_CurrentMetricValue;
RealType m_CurrentConvergenceValue;
bool m_IsConverged;
FixedImagesContainerType m_FixedSmoothImages;
MovingImagesContainerType m_MovingSmoothImages;
SizeValueType m_NumberOfFixedImages;
SizeValueType m_NumberOfMovingImages;
OptimizerPointer m_Optimizer;
OptimizerWeightsType m_OptimizerWeights;
bool m_OptimizerWeightsAreIdentity;
MetricPointer m_Metric;
MetricSamplingStrategyType m_MetricSamplingStrategy;
MetricSamplingPercentageArrayType m_MetricSamplingPercentagePerLevel;
std::vector<ShrinkFactorsPerDimensionContainerType> m_ShrinkFactorsPerLevel;
SmoothingSigmasArrayType m_SmoothingSigmasPerLevel;
bool m_SmoothingSigmasAreSpecifiedInPhysicalUnits;
InitialTransformPointer m_MovingInitialTransform;
InitialTransformPointer m_FixedInitialTransform;
TransformParametersAdaptorsContainerType m_TransformParametersAdaptorsPerLevel;
CompositeTransformPointer m_CompositeTransform;
OutputTransformPointer m_OutputTransform;
private:
ImageRegistrationMethodv4( const Self & ); //purposely not implemented
void operator=( const Self & ); //purposely not implemented
};
} // end namespace itk
#ifndef ITK_MANUAL_INSTANTIATION
#include "itkImageRegistrationMethodv4.hxx"
#endif
#endif
|