/usr/include/ITK-4.5/itkInitializationBiasedParticleSwarmOptimizer.h is in libinsighttoolkit4-dev 4.5.0-3.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 | /*=========================================================================
*
* Copyright Insight Software Consortium
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0.txt
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
*=========================================================================*/
#ifndef __itkInitializationBiasedParticleSwarmOptimizer_h
#define __itkInitializationBiasedParticleSwarmOptimizer_h
#include "itkParticleSwarmOptimizerBase.h"
namespace itk
{
/** \class InitializationBiasedParticleSwarmOptimizer
* \brief Implementation of a biased/regularized Particle Swarm Optimization
* (PSO) algorithm.
*
* This PSO algorithm was originally described in:
* M. P. Wachowiak, R. Smolikova, Y. Zheng, J. M. Zurada, A. S. Elmaghraby,
* "An approach to multimodal biomedical image registration utilizing particle
* swarm optimization", IEEE Trans. Evol. Comput., vol. 8(3): 289-301, 2004.
*
* The algorithm uses a stochastic optimization approach. Optimization
* is performed by maintaining a swarm (flock) of
* particles that traverse the parameter space, searching for the optimal
* function value. Associated with each particle are its location and speed, in
* parameter space. A particle's next location is determined by its current
* location, its current speed, the location of the best function value it
* previously encountered, the location of the best function value the
* particles in its neighborhood previously encountered and the initial position
* the user specified.
*
* The assumption is that the user's initial parameter settings are close to the
* minimum, which is often the case for registration. The initial parameter
* values are incorporated into the PSO's update rules, biasing the search in
* their direction. The swarms update equations are thus:
*
* \f$v_i(t+1) = wv_i(t) + c_1u_1(p_i-x_i(t)) + c_2u_2(p_g-x_i(t)) +
* c_3u_3(x_{init} - x_i(t))\f$
* \f$x_i(t+1) = clampToBounds(x_i(t) + v_i(t+1))\f$
*
* where \f$u_i\f$ are \f$~U(0,1)\f$ and \f$w,c_1,c_2, c_3\f$ are user selected
* weights, and c_3 is linearly decreased per iteration so that it is in
* \f$c_3=initial, 0\f$.
*
* Swarm initialization is performed within the user supplied parameter bounds
* using a uniform distribution or a normal distribution centered on
* the initial parameter values supplied by the user, \f$x_{init}\f$. The search
* terminates when the maximal number of iterations has been reached or when the
* change in the best value in the past \f$g\f$ generations is below a threshold
* and the swarm has collapsed (i.e. particles are close to each other in
* parameter space).
*
* \note This implementation only performs minimization.
*
* \ingroup Numerics Optimizers
* \ingroup ITKOptimizers
*/
class InitializationBiasedParticleSwarmOptimizer :
public ParticleSwarmOptimizerBase
{
public:
/** Standard "Self" typedef. */
typedef InitializationBiasedParticleSwarmOptimizer Self;
typedef ParticleSwarmOptimizerBase Superclass;
typedef SmartPointer<Self> Pointer;
typedef SmartPointer<const Self> ConstPointer;
typedef double CoefficientType;
/** Method for creation through the object factory. */
itkNewMacro( Self )
/** Run-time type information (and related methods). */
itkTypeMacro( InitializationBiasedParticleSwarmOptimizer,
ParticleSwarmOptimizerBase )
/** The Particle swarm optimizer uses the following update formula:
* \f[c_3 = c_{3initial}(1.0 - IterationIndex/MaximalNumberOfIterations)\f]
* \f[v_i(t+1) = w*v_i(t) +
* c_1*uniform(0,1)*(p_i-x_i(t)) +
* c_2*uniform(0,1)*(p_g-x_i(t)) +
* c_3*uniform(0,1)*(x_{init}-x_i(t))\f]
* \f[x_i(t+1) = clampToBounds(x_i(t) + v_i(t+1))\f]
* where
* \f$w\f$ - inertia constant
* \f$c_1\f$ - personal coefficient
* \f$c_2\f$ - global coefficient
* \f$c_3\f$ - initial location coefficient
* \f$p_i\f$ - parameters yielding the best function value obtained by this particle
* \f$p_g\f$ - parameters yielding the best function value obtained by all particles
* \f$x_{init}\f$ - initial parameter values provided by user
*/
itkSetMacro( InertiaCoefficient, CoefficientType )
itkGetMacro( InertiaCoefficient, CoefficientType )
itkSetMacro( PersonalCoefficient, CoefficientType )
itkGetMacro( PersonalCoefficient, CoefficientType )
itkSetMacro( GlobalCoefficient, CoefficientType )
itkGetMacro( GlobalCoefficient, CoefficientType )
itkSetMacro( InitializationCoefficient, CoefficientType )
itkGetMacro( InitializationCoefficient, CoefficientType )
protected:
InitializationBiasedParticleSwarmOptimizer();
virtual ~InitializationBiasedParticleSwarmOptimizer() {};
void PrintSelf(std::ostream& os, Indent indent) const;
virtual void UpdateSwarm();
private:
//purposely not implemented
InitializationBiasedParticleSwarmOptimizer(const Self&);
//purposely not implemented
void operator=(const Self&);
ParametersType::ValueType m_InertiaCoefficient;
ParametersType::ValueType m_PersonalCoefficient;
ParametersType::ValueType m_GlobalCoefficient;
ParametersType::ValueType m_InitializationCoefficient;
};
} // end namespace itk
#endif
|