This file is indexed.

/usr/include/ITK-4.5/itkLevelSetFunction.hxx is in libinsighttoolkit4-dev 4.5.0-3.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
/*=========================================================================
 *
 *  Copyright Insight Software Consortium
 *
 *  Licensed under the Apache License, Version 2.0 (the "License");
 *  you may not use this file except in compliance with the License.
 *  You may obtain a copy of the License at
 *
 *         http://www.apache.org/licenses/LICENSE-2.0.txt
 *
 *  Unless required by applicable law or agreed to in writing, software
 *  distributed under the License is distributed on an "AS IS" BASIS,
 *  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 *  See the License for the specific language governing permissions and
 *  limitations under the License.
 *
 *=========================================================================*/
#ifndef __itkLevelSetFunction_hxx
#define __itkLevelSetFunction_hxx

#include "itkLevelSetFunction.h"
#include "vnl/algo/vnl_symmetric_eigensystem.h"

namespace itk
{
template< typename TImageType >
typename LevelSetFunction< TImageType >::ScalarValueType
LevelSetFunction< TImageType >::ComputeCurvatureTerm(const NeighborhoodType & neighborhood,
                                                     const FloatOffsetType & offset, GlobalDataStruct *gd)
{
  if ( m_UseMinimalCurvature == false )
    {
    return this->ComputeMeanCurvature(neighborhood, offset, gd);
    }
  else
    {
    if ( ImageDimension == 3 )
      {
      return this->ComputeMinimalCurvature(neighborhood, offset, gd);
      }
    else if ( ImageDimension == 2 )
      {
      return this->ComputeMeanCurvature(neighborhood, offset, gd);
      }
    else
      {
      return this->ComputeMinimalCurvature(neighborhood, offset, gd);
      }
    }
}

template< typename TImageType >
typename LevelSetFunction< TImageType >::ScalarValueType
LevelSetFunction< TImageType >
::ComputeMinimalCurvature(
  const NeighborhoodType & itkNotUsed(neighborhood),
  const FloatOffsetType & itkNotUsed(offset), GlobalDataStruct *gd)
{
  unsigned int          i, j, n;
  ScalarValueType       gradMag = vcl_sqrt(gd->m_GradMagSqr);
  ScalarValueType       Pgrad[ImageDimension][ImageDimension];
  ScalarValueType       tmp_matrix[ImageDimension][ImageDimension];
  const ScalarValueType ZERO = NumericTraits< ScalarValueType >::Zero;

  vnl_matrix_fixed< ScalarValueType, ImageDimension, ImageDimension > Curve;
  const ScalarValueType                                               MIN_EIG = NumericTraits< ScalarValueType >::min();

  ScalarValueType mincurve;

  for ( i = 0; i < ImageDimension; i++ )
    {
    Pgrad[i][i] = 1.0 - gd->m_dx[i] * gd->m_dx[i] / gradMag;
    for ( j = i + 1; j < ImageDimension; j++ )
      {
      Pgrad[i][j] = gd->m_dx[i] * gd->m_dx[j] / gradMag;
      Pgrad[j][i] = Pgrad[i][j];
      }
    }

  //Compute Pgrad * Hessian * Pgrad
  for ( i = 0; i < ImageDimension; i++ )
    {
    for ( j = i; j < ImageDimension; j++ )
      {
      tmp_matrix[i][j] = ZERO;
      for ( n = 0; n < ImageDimension; n++ )
        {
        tmp_matrix[i][j] += Pgrad[i][n] * gd->m_dxy[n][j];
        }
      tmp_matrix[j][i] = tmp_matrix[i][j];
      }
    }

  for ( i = 0; i < ImageDimension; i++ )
    {
    for ( j = i; j < ImageDimension; j++ )
      {
      Curve(i, j) = ZERO;
      for ( n = 0; n < ImageDimension; n++ )
        {
        Curve(i, j) += tmp_matrix[i][n] * Pgrad[n][j];
        }
      Curve(j, i) = Curve(i, j);
      }
    }

  //Eigensystem
  vnl_symmetric_eigensystem< ScalarValueType > eig(Curve);

  mincurve = vnl_math_abs( eig.get_eigenvalue(ImageDimension - 1) );
  for ( i = 0; i < ImageDimension; i++ )
    {
    if ( vnl_math_abs( eig.get_eigenvalue(i) ) < mincurve
         && vnl_math_abs( eig.get_eigenvalue(i) ) > MIN_EIG )
      {
      mincurve = vnl_math_abs( eig.get_eigenvalue(i) );
      }
    }

  return ( mincurve / gradMag );
}

template< typename TImageType >
typename LevelSetFunction< TImageType >::ScalarValueType
LevelSetFunction< TImageType >
::Compute3DMinimalCurvature(const NeighborhoodType & neighborhood,
                            const FloatOffsetType & offset, GlobalDataStruct *gd)
{
  ScalarValueType mean_curve = this->ComputeMeanCurvature(neighborhood, offset, gd);

  int             i0 = 0, i1 = 1, i2 = 2;
  ScalarValueType gauss_curve =
    ( 2 * ( gd->m_dx[i0] * gd->m_dx[i1] * ( gd->m_dxy[i2][i0]
                                            * gd->m_dxy[i1][i2] - gd->m_dxy[i0][i1] * gd->m_dxy[i2][i2] )
            + gd->m_dx[i1] * gd->m_dx[i2] * ( gd->m_dxy[i2][i0]
                                              * gd->m_dxy[i0][i1] - gd->m_dxy[i1][i2] * gd->m_dxy[i0][i0] )
            + gd->m_dx[i0] * gd->m_dx[i2] * ( gd->m_dxy[i1][i2]
                                              * gd->m_dxy[i0][i1] - gd->m_dxy[i2][i0] * gd->m_dxy[i1][i1] ) )
      + gd->m_dx[i0] * gd->m_dx[i0] * ( gd->m_dxy[i1][i1]
                                        * gd->m_dxy[i2][i2] - gd->m_dxy[i1][i2] * gd->m_dxy[i1][i2] )
      + gd->m_dx[i1] * gd->m_dx[i1] * ( gd->m_dxy[i0][i0]
                                        * gd->m_dxy[i2][i2] - gd->m_dxy[i2][i0] * gd->m_dxy[i2][i0] )
      + gd->m_dx[i2] * gd->m_dx[i2] * ( gd->m_dxy[i1][i1]
                                        * gd->m_dxy[i0][i0] - gd->m_dxy[i0][i1] * gd->m_dxy[i0][i1] ) )
    / ( gd->m_dx[i0] * gd->m_dx[i0] + gd->m_dx[i1] * gd->m_dx[i1] + gd->m_dx[i2] * gd->m_dx[i2] );

  ScalarValueType discriminant = mean_curve * mean_curve - gauss_curve;

  if ( discriminant < 0.0 )
    {
    discriminant = 0.0;
    }
  discriminant = vcl_sqrt(discriminant);
  return  ( mean_curve - discriminant );
}

template< typename TImageType >
typename LevelSetFunction< TImageType >::ScalarValueType
LevelSetFunction< TImageType >::ComputeMeanCurvature(
  const NeighborhoodType & itkNotUsed(neighborhood),
  const FloatOffsetType & itkNotUsed(offset), GlobalDataStruct *gd)
{
  // Calculate the mean curvature
  ScalarValueType curvature_term = NumericTraits< ScalarValueType >::Zero;
  unsigned int    i, j;

  for ( i = 0; i < ImageDimension; i++ )
    {
    for ( j = 0; j < ImageDimension; j++ )
      {
      if ( j != i )
        {
        curvature_term -= gd->m_dx[i] * gd->m_dx[j] * gd->m_dxy[i][j];
        curvature_term += gd->m_dxy[j][j] * gd->m_dx[i] * gd->m_dx[i];
        }
      }
    }

  return ( curvature_term / gd->m_GradMagSqr );
}

template< typename TImageType >
typename LevelSetFunction< TImageType >::VectorType
LevelSetFunction< TImageType >::InitializeZeroVectorConstant()
{
  VectorType ans;

  for ( unsigned int i = 0; i < ImageDimension; ++i )
    {
    ans[i] = NumericTraits< ScalarValueType >::Zero;
    }

  return ans;
}

template< typename TImageType >
typename LevelSetFunction< TImageType >::VectorType
LevelSetFunction< TImageType >::m_ZeroVectorConstant =
  LevelSetFunction< TImageType >::InitializeZeroVectorConstant();

template< typename TImageType >
void
LevelSetFunction< TImageType >::PrintSelf(std::ostream & os, Indent indent) const
{
  Superclass::PrintSelf(os, indent);
  os << indent << "WaveDT: " << m_WaveDT << std::endl;
  os << indent << "DT: " << m_DT << std::endl;
  os << indent << "UseMinimalCurvature " << m_UseMinimalCurvature << std::endl;
  os << indent << "EpsilonMagnitude: " << m_EpsilonMagnitude << std::endl;
  os << indent << "AdvectionWeight: " << m_AdvectionWeight << std::endl;
  os << indent << "PropagationWeight: " << m_PropagationWeight << std::endl;
  os << indent << "CurvatureWeight: " << m_CurvatureWeight << std::endl;
  os << indent << "LaplacianSmoothingWeight: " << m_LaplacianSmoothingWeight << std::endl;
}

template< typename TImageType >
double LevelSetFunction< TImageType >::m_WaveDT = 1.0 / ( 2.0 * ImageDimension );

template< typename TImageType >
double LevelSetFunction< TImageType >::m_DT     = 1.0 / ( 2.0 * ImageDimension );

template< typename TImageType >
typename LevelSetFunction< TImageType >::TimeStepType
LevelSetFunction< TImageType >
::ComputeGlobalTimeStep(void *GlobalData) const
{
  TimeStepType dt;

  GlobalDataStruct *d = (GlobalDataStruct *)GlobalData;

  d->m_MaxAdvectionChange += d->m_MaxPropagationChange;

  if ( vnl_math_abs(d->m_MaxCurvatureChange) > 0.0 )
    {
    if ( d->m_MaxAdvectionChange > 0.0 )
      {
      dt = vnl_math_min( ( m_WaveDT / d->m_MaxAdvectionChange ),
                         (    m_DT / d->m_MaxCurvatureChange ) );
      }
    else
      {
      dt = m_DT / d->m_MaxCurvatureChange;
      }
    }
  else
    {
    if ( d->m_MaxAdvectionChange > 0.0 )
      {
      dt = m_WaveDT / d->m_MaxAdvectionChange;
      }
    else
      {
      dt = 0.0;
      }
    }

  double maxScaleCoefficient = 0.0;
  for ( unsigned int i = 0; i < ImageDimension; i++ )
    {
    maxScaleCoefficient = vnl_math_max(this->m_ScaleCoefficients[i], maxScaleCoefficient);
    }
  dt /= maxScaleCoefficient;

  // reset the values
  d->m_MaxAdvectionChange   = NumericTraits< ScalarValueType >::Zero;
  d->m_MaxPropagationChange = NumericTraits< ScalarValueType >::Zero;
  d->m_MaxCurvatureChange   = NumericTraits< ScalarValueType >::Zero;

  return dt;
}

template< typename TImageType >
void
LevelSetFunction< TImageType >
::Initialize(const RadiusType & r)
{
  this->SetRadius(r);

  // Dummy neighborhood.
  NeighborhoodType it;
  it.SetRadius(r);

  // Find the center index of the neighborhood.
  m_Center =  it.Size() / 2;

  // Get the stride length for each axis.
  for ( unsigned int i = 0; i < ImageDimension; i++ )
    {
    m_xStride[i] = it.GetStride(i);
    }
}

template< typename TImageType >
typename LevelSetFunction< TImageType >::PixelType
LevelSetFunction< TImageType >
::ComputeUpdate(const NeighborhoodType & it, void *globalData,
                const FloatOffsetType & offset)
{
  unsigned int          i, j;
  const ScalarValueType ZERO = NumericTraits< ScalarValueType >::Zero;
  const ScalarValueType center_value  = it.GetCenterPixel();

  const NeighborhoodScalesType neighborhoodScales = this->ComputeNeighborhoodScales();

  ScalarValueType laplacian, x_energy, laplacian_term, propagation_term,
                  curvature_term, advection_term, propagation_gradient;
  VectorType advection_field;

  // Global data structure
  GlobalDataStruct *gd = (GlobalDataStruct *)globalData;

  // Compute the Hessian matrix and various other derivatives.  Some of these
  // derivatives may be used by overloaded virtual functions.
  gd->m_GradMagSqr = 1.0e-6;
  for ( i = 0; i < ImageDimension; i++ )
    {
    const unsigned int positionA =
      static_cast< unsigned int >( m_Center + m_xStride[i] );
    const unsigned int positionB =
      static_cast< unsigned int >( m_Center - m_xStride[i] );

    gd->m_dx[i] = 0.5 * ( it.GetPixel(positionA)
                          - it.GetPixel(positionB) ) * neighborhoodScales[i];
    gd->m_dxy[i][i] = ( it.GetPixel(positionA)
                        + it.GetPixel(positionB) - 2.0 * center_value )
                      * vnl_math_sqr(neighborhoodScales[i]);

    gd->m_dx_forward[i]  = ( it.GetPixel(positionA) - center_value ) * neighborhoodScales[i];

    gd->m_dx_backward[i] = ( center_value - it.GetPixel(positionB) ) * neighborhoodScales[i];

    gd->m_GradMagSqr += gd->m_dx[i] * gd->m_dx[i];

    for ( j = i + 1; j < ImageDimension; j++ )
      {
      const unsigned int positionAa = static_cast< unsigned int >(
        m_Center - m_xStride[i] - m_xStride[j] );
      const unsigned int positionBa = static_cast< unsigned int >(
        m_Center - m_xStride[i] + m_xStride[j] );
      const unsigned int positionCa = static_cast< unsigned int >(
        m_Center + m_xStride[i] - m_xStride[j] );
      const unsigned int positionDa = static_cast< unsigned int >(
        m_Center + m_xStride[i] + m_xStride[j] );

      gd->m_dxy[i][j] = gd->m_dxy[j][i] = 0.25 * ( it.GetPixel(positionAa)
                                                   - it.GetPixel(positionBa)
                                                   - it.GetPixel(positionCa)
                                                   + it.GetPixel(positionDa) )
                                          * neighborhoodScales[i] * neighborhoodScales[j];
      }
    }

  if ( m_CurvatureWeight != ZERO )
    {
    curvature_term = this->ComputeCurvatureTerm(it, offset, gd) * m_CurvatureWeight
                     * this->CurvatureSpeed(it, offset);

    gd->m_MaxCurvatureChange = vnl_math_max( gd->m_MaxCurvatureChange,
                                             vnl_math_abs(curvature_term) );
    }
  else
    {
    curvature_term = ZERO;
    }

  // Calculate the advection term.
  //  $\alpha \stackrel{\rightharpoonup}{F}(\mathbf{x})\cdot\nabla\phi $
  //
  // Here we can use a simple upwinding scheme since we know the
  // sign of each directional component of the advective force.
  //
  if ( m_AdvectionWeight != ZERO )
    {
    advection_field = this->AdvectionField(it, offset, gd);
    advection_term = ZERO;

    for ( i = 0; i < ImageDimension; i++ )
      {
      x_energy = m_AdvectionWeight * advection_field[i];

      if ( x_energy > ZERO )
        {
        advection_term += advection_field[i] * gd->m_dx_backward[i];
        }
      else
        {
        advection_term += advection_field[i] * gd->m_dx_forward[i];
        }

      gd->m_MaxAdvectionChange =
        vnl_math_max( gd->m_MaxAdvectionChange, vnl_math_abs(x_energy) );
      }
    advection_term *= m_AdvectionWeight;
    }
  else
    {
    advection_term = ZERO;
    }

  if ( m_PropagationWeight != ZERO )
    {
    // Get the propagation speed
    propagation_term = m_PropagationWeight * this->PropagationSpeed(it, offset, gd);

    //
    // Construct upwind gradient values for use in the propagation speed term:
    //  $\beta G(\mathbf{x})\mid\nabla\phi\mid$
    //
    // The following scheme for ``upwinding'' in the normal direction is taken
    // from Sethian, Ch. 6 as referenced above.
    //
    propagation_gradient = ZERO;

    if ( propagation_term > ZERO )
      {
      for ( i = 0; i < ImageDimension; i++ )
        {
        propagation_gradient += vnl_math_sqr( vnl_math_max(gd->m_dx_backward[i], ZERO) )
                                + vnl_math_sqr( vnl_math_min(gd->m_dx_forward[i],  ZERO) );
        }
      }
    else
      {
      for ( i = 0; i < ImageDimension; i++ )
        {
        propagation_gradient += vnl_math_sqr( vnl_math_min(gd->m_dx_backward[i], ZERO) )
                                + vnl_math_sqr( vnl_math_max(gd->m_dx_forward[i],  ZERO) );
        }
      }

    // Collect energy change from propagation term.  This will be used in
    // calculating the maximum time step that can be taken for this iteration.
    gd->m_MaxPropagationChange =
      vnl_math_max( gd->m_MaxPropagationChange,
                    vnl_math_abs(propagation_term) );

    propagation_term *= vcl_sqrt(propagation_gradient);
    }
  else { propagation_term = ZERO; }

  if ( m_LaplacianSmoothingWeight != ZERO )
    {
    laplacian = ZERO;

    // Compute the laplacian using the existing second derivative values
    for ( i = 0; i < ImageDimension; i++ )
      {
      laplacian += gd->m_dxy[i][i];
      }

    // Scale the laplacian by its speed and weight
    laplacian_term =
      laplacian * m_LaplacianSmoothingWeight * LaplacianSmoothingSpeed(it, offset, gd);
    }
  else
    {
    laplacian_term = ZERO;
    }
  // Return the combination of all the terms.
  return (PixelType)( curvature_term - propagation_term
                      - advection_term - laplacian_term );
}
} // end namespace itk

#endif