/usr/include/ITK-4.5/itkLiThresholdCalculator.hxx is in libinsighttoolkit4-dev 4.5.0-3.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 | /*=========================================================================
*
* Copyright Insight Software Consortium
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0.txt
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
*=========================================================================*/
#ifndef __itkLiThresholdCalculator_hxx
#define __itkLiThresholdCalculator_hxx
#include "itkLiThresholdCalculator.h"
#include "itkProgressReporter.h"
#include "vnl/vnl_math.h"
namespace itk
{
/*
* Compute the Li's threshold
*/
template<typename THistogram, typename TOutput>
void
LiThresholdCalculator<THistogram, TOutput>
::GenerateData(void)
{
const HistogramType * histogram = this->GetInput();
// histogram->Print(std::cout);
if ( histogram->GetTotalFrequency() == 0 )
{
itkExceptionMacro(<< "Histogram is empty");
}
ProgressReporter progress(this, 0, histogram->GetSize(0) );
if( histogram->GetSize(0) == 1 )
{
this->GetOutput()->Set( static_cast<OutputType>( histogram->GetMeasurement(0,0) ) );
}
unsigned int size = histogram->GetSize(0);
long int histthresh;
int ih;
int num_pixels;
double sum_back; /* sum of the background pixels at a given threshold */
double sum_obj; /* sum of the object pixels at a given threshold */
int num_back; /* number of background pixels at a given threshold */
int num_obj; /* number of object pixels at a given threshold */
double old_thresh;
double new_thresh;
double mean_back; /* mean of the background pixels at a given threshold */
double mean_obj; /* mean of the object pixels at a given threshold */
double mean; /* mean gray-level in the image */
double tolerance; /* threshold tolerance */
double temp;
tolerance=0.5;
num_pixels = histogram->GetTotalFrequency();
/* Calculate the mean gray-level */
mean = 0.0;
for ( ih = 0; (unsigned)ih < size; ih++ ) //0 + 1?
mean += histogram->GetMeasurement(ih, 0) * histogram->GetFrequency(ih, 0);
mean /= num_pixels;
/* Initial estimate */
new_thresh = mean;
do{
old_thresh = new_thresh;
typename HistogramType::MeasurementVectorType ot(1);
ot.Fill((int) (old_thresh+0.5));
{
typename HistogramType::IndexType local_index;
histogram->GetIndex(ot,local_index);
histthresh = local_index[0];
}
/* Calculate the means of background and object pixels */
/* Background */
sum_back = 0;
num_back = 0;
for ( ih = 0; ih <= histthresh; ih++ )
{
sum_back += histogram->GetMeasurement(ih, 0) * histogram->GetFrequency(ih, 0);
num_back += histogram->GetFrequency(ih, 0);
}
mean_back = ( num_back == 0 ? 0.0 : ( sum_back / ( double ) num_back ) );
/* Object */
sum_obj = 0;
num_obj = 0;
for ( ih = histthresh + 1; (unsigned)ih < size; ih++ )
{
sum_obj += histogram->GetMeasurement(ih, 0) * histogram->GetFrequency(ih, 0);
num_obj += histogram->GetFrequency(ih, 0);
}
mean_obj = ( num_obj == 0 ? 0.0 : ( sum_obj / ( double ) num_obj ) );
/* Calculate the new threshold: Equation (7) in Ref. 2 */
//new_thresh = simple_round ( ( mean_back - mean_obj ) / ( Math.log ( mean_back ) - Math.log ( mean_obj ) ) );
//simple_round ( double x ) {
// return ( int ) ( IS_NEG ( x ) ? x - .5 : x + .5 );
//}
//
//#define IS_NEG( x ) ( ( x ) < -DBL_EPSILON )
//DBL_EPSILON = 2.220446049250313E-16
temp = ( mean_back - mean_obj ) / ( vcl_log ( mean_back ) - vcl_log ( mean_obj ) );
if (temp < -2.220446049250313E-16)
new_thresh = (int) (temp - 0.5);
else
new_thresh = (int) (temp + 0.5);
/* Stop the iterations when the difference between the
new and old threshold values is less than the tolerance */
}
while ( vcl_abs ( new_thresh - old_thresh ) > tolerance );
this->GetOutput()->Set( static_cast<OutputType>( histogram->GetMeasurement( histthresh, 0 ) ) );
}
} // end namespace itk
#endif
|