This file is indexed.

/usr/include/ITK-4.5/itkLinearInterpolateImageFunction.h is in libinsighttoolkit4-dev 4.5.0-3.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
/*=========================================================================
 *
 *  Copyright Insight Software Consortium
 *
 *  Licensed under the Apache License, Version 2.0 (the "License");
 *  you may not use this file except in compliance with the License.
 *  You may obtain a copy of the License at
 *
 *         http://www.apache.org/licenses/LICENSE-2.0.txt
 *
 *  Unless required by applicable law or agreed to in writing, software
 *  distributed under the License is distributed on an "AS IS" BASIS,
 *  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 *  See the License for the specific language governing permissions and
 *  limitations under the License.
 *
 *=========================================================================*/
#ifndef __itkLinearInterpolateImageFunction_h
#define __itkLinearInterpolateImageFunction_h

#include "itkInterpolateImageFunction.h"

namespace itk
{
/** \class LinearInterpolateImageFunction
 * \brief Linearly interpolate an image at specified positions.
 *
 * LinearInterpolateImageFunction linearly interpolates image intensity at
 * a non-integer pixel position. This class is templated
 * over the input image type and the coordinate representation type
 * (e.g. float or double).
 *
 * This function works for N-dimensional images.
 *
 * This function works for images with scalar and vector pixel
 * types, and for images of type VectorImage.
 *
 * \sa VectorLinearInterpolateImageFunction
 *
 * \ingroup ImageFunctions ImageInterpolators
 * \ingroup ITKImageFunction
 *
 * \wiki
 * \wikiexample{ImageProcessing/LinearInterpolateImageFunction,Linearly interpolate a position in an image}
 * \endwiki
 */
template< typename TInputImage, typename TCoordRep = double >
class LinearInterpolateImageFunction:
  public InterpolateImageFunction< TInputImage, TCoordRep >
{
public:
  /** Standard class typedefs. */
  typedef LinearInterpolateImageFunction                     Self;
  typedef InterpolateImageFunction< TInputImage, TCoordRep > Superclass;
  typedef SmartPointer< Self >                               Pointer;
  typedef SmartPointer< const Self >                         ConstPointer;

  /** Run-time type information (and related methods). */
  itkTypeMacro(LinearInterpolateImageFunction, InterpolateImageFunction);

  /** Method for creation through the object factory. */
  itkNewMacro(Self);

  /** OutputType typedef support. */
  typedef typename Superclass::OutputType OutputType;

  /** InputImageType typedef support. */
  typedef typename Superclass::InputImageType InputImageType;

  /** InputPixelType typedef support. */
  typedef typename Superclass::InputPixelType InputPixelType;

  /** RealType typedef support. */
  typedef typename Superclass::RealType RealType;

  /** Dimension underlying input image. */
  itkStaticConstMacro(ImageDimension, unsigned int, Superclass::ImageDimension);

  /** Index typedef support. */
  typedef typename Superclass::IndexType      IndexType;

  /** ContinuousIndex typedef support. */
  typedef typename Superclass::ContinuousIndexType ContinuousIndexType;
  typedef typename ContinuousIndexType::ValueType  InternalComputationType;

  /** Evaluate the function at a ContinuousIndex position
   *
   * Returns the linearly interpolated image intensity at a
   * specified point position. No bounds checking is done.
   * The point is assume to lie within the image buffer.
   *
   * ImageFunction::IsInsideBuffer() can be used to check bounds before
   * calling the method. */
  virtual inline OutputType EvaluateAtContinuousIndex(const
                                                      ContinuousIndexType &
                                                      index) const
  {
    return this->EvaluateOptimized(Dispatch< ImageDimension >(), index);
  }

protected:
  LinearInterpolateImageFunction();
  ~LinearInterpolateImageFunction();
  void PrintSelf(std::ostream & os, Indent indent) const;

private:
  LinearInterpolateImageFunction(const Self &); //purposely not implemented
  void operator=(const Self &);                 //purposely not implemented

  /** Number of neighbors used in the interpolation */
  static const unsigned long m_Neighbors;

  struct DispatchBase {};
  template< unsigned int >
  struct Dispatch: public DispatchBase {};

  inline OutputType EvaluateOptimized(const Dispatch< 0 > &,
                                      const ContinuousIndexType & ) const
  {
    return 0;
  }

  inline OutputType EvaluateOptimized(const Dispatch< 1 > &,
                                      const ContinuousIndexType & index) const
  {
    IndexType basei;
    basei[0] = Math::Floor< IndexValueType >(index[0]);
    if ( basei[0] < this->m_StartIndex[0] )
      {
      basei[0] = this->m_StartIndex[0];
      }

    const InternalComputationType & distance = index[0] - static_cast< InternalComputationType >( basei[0] );

    const TInputImage * const inputImagePtr = this->GetInputImage();
    const RealType & val0 = inputImagePtr->GetPixel(basei);
    if ( distance <= 0. )
      {
      return ( static_cast< OutputType >( val0 ) );
      }

    ++basei[0];
    if ( basei[0] > this->m_EndIndex[0] )
      {
      return ( static_cast< OutputType >( val0 ) );
      }
    const RealType & val1 = inputImagePtr->GetPixel(basei);

    return ( static_cast< OutputType >( val0 + ( val1 - val0 ) * distance ) );
  }

  inline OutputType EvaluateOptimized(const Dispatch< 2 > &,
                                      const ContinuousIndexType & index) const
  {
    IndexType basei;

    basei[0] = Math::Floor< IndexValueType >(index[0]);
    if ( basei[0] < this->m_StartIndex[0] )
      {
      basei[0] = this->m_StartIndex[0];
      }
    const InternalComputationType & distance0 = index[0] - static_cast< InternalComputationType >( basei[0] );

    basei[1] = Math::Floor< IndexValueType >(index[1]);
    if ( basei[1] < this->m_StartIndex[1] )
      {
      basei[1] = this->m_StartIndex[1];
      }
    const InternalComputationType & distance1 = index[1] - static_cast< InternalComputationType >( basei[1] );

    const TInputImage * const inputImagePtr = this->GetInputImage();
    const RealType & val00 = inputImagePtr->GetPixel(basei);
    if ( distance0 <= 0. && distance1 <= 0. )
      {
      return ( static_cast< OutputType >( val00 ) );
      }
    else if ( distance1 <= 0. ) // if they have the same "y"
      {
      ++basei[0];  // then interpolate across "x"
      if ( basei[0] > this->m_EndIndex[0] )
        {
        return ( static_cast< OutputType >( val00 ) );
        }
      const RealType & val10 = inputImagePtr->GetPixel(basei);
      return ( static_cast< OutputType >( val00 + ( val10 - val00 ) * distance0 ) );
      }
    else if ( distance0 <= 0. ) // if they have the same "x"
      {
      ++basei[1];  // then interpolate across "y"
      if ( basei[1] > this->m_EndIndex[1] )
        {
        return ( static_cast< OutputType >( val00 ) );
        }
      const RealType & val01 = inputImagePtr->GetPixel(basei);
      return ( static_cast< OutputType >( val00 + ( val01 - val00 ) * distance1 ) );
      }
    // fall-through case:
    // interpolate across "xy"
    ++basei[0];
    if ( basei[0] > this->m_EndIndex[0] ) // interpolate across "y"
      {
      --basei[0];
      ++basei[1];
      if ( basei[1] > this->m_EndIndex[1] )
        {
        return ( static_cast< OutputType >( val00 ) );
        }
      const RealType & val01 = inputImagePtr->GetPixel(basei);
      return ( static_cast< OutputType >( val00 + ( val01 - val00 ) * distance1 ) );
      }
    const RealType & val10 = inputImagePtr->GetPixel(basei);

    const RealType & valx0 = val00 + ( val10 - val00 ) * distance0;

    ++basei[1];
    if ( basei[1] > this->m_EndIndex[1] ) // interpolate across "x"
      {
      return ( static_cast< OutputType >( valx0 ) );
      }
    const RealType & val11 = inputImagePtr->GetPixel(basei);
    --basei[0];
    const RealType & val01 = inputImagePtr->GetPixel(basei);

    const RealType & valx1 = val01 + ( val11 - val01 ) * distance0;

    return ( static_cast< OutputType >( valx0 + ( valx1 - valx0 ) * distance1 ) );
  }

  inline OutputType EvaluateOptimized(const Dispatch< 3 > &,
                                      const ContinuousIndexType & index) const
  {
    IndexType basei;
    basei[0] = Math::Floor< IndexValueType >(index[0]);
    if ( basei[0] < this->m_StartIndex[0] )
      {
      basei[0] = this->m_StartIndex[0];
      }
    const InternalComputationType & distance0 = index[0] - static_cast< InternalComputationType >( basei[0] );

    basei[1] = Math::Floor< IndexValueType >(index[1]);
    if ( basei[1] < this->m_StartIndex[1] )
      {
      basei[1] = this->m_StartIndex[1];
      }
    const InternalComputationType & distance1 = index[1] - static_cast< InternalComputationType >( basei[1] );

    basei[2] = Math::Floor< IndexValueType >(index[2]);
    if ( basei[2] < this->m_StartIndex[2] )
      {
      basei[2] = this->m_StartIndex[2];
      }
    const InternalComputationType & distance2 = index[2] - static_cast< InternalComputationType >( basei[2] );

    const TInputImage * const inputImagePtr = this->GetInputImage();
    const RealType & val000 = inputImagePtr->GetPixel(basei);
    if ( distance0 <= 0. && distance1 <= 0. && distance2 <= 0. )
      {
      return ( static_cast< OutputType >( val000 ) );
      }

    if ( distance2 <= 0. )
      {
      if ( distance1 <= 0. ) // interpolate across "x"
        {
        ++basei[0];
        if ( basei[0] > this->m_EndIndex[0] )
          {
          return ( static_cast< OutputType >( val000 ) );
          }
        const RealType & val100 = inputImagePtr->GetPixel(basei);

        return static_cast< OutputType >( val000 + ( val100 - val000 ) * distance0 );
        }
      else if ( distance0 <= 0. ) // interpolate across "y"
        {
        ++basei[1];
        if ( basei[1] > this->m_EndIndex[1] )
          {
          return ( static_cast< OutputType >( val000 ) );
          }
        const RealType & val010 = inputImagePtr->GetPixel(basei);

        return static_cast< OutputType >( val000 + ( val010 - val000 ) * distance1 );
        }
      else  // interpolate across "xy"
        {
        ++basei[0];
        if ( basei[0] > this->m_EndIndex[0] ) // interpolate across "y"
          {
          --basei[0];
          ++basei[1];
          if ( basei[1] > this->m_EndIndex[1] )
            {
            return ( static_cast< OutputType >( val000 ) );
            }
          const RealType & val010 = inputImagePtr->GetPixel(basei);
          return static_cast< OutputType >( val000 + ( val010 - val000 ) * distance1 );
          }
        const RealType & val100 = inputImagePtr->GetPixel(basei);
        const RealType & valx00 = val000 + ( val100 - val000 ) * distance0;

        ++basei[1];
        if ( basei[1] > this->m_EndIndex[1] ) // interpolate across "x"
          {
          return ( static_cast< OutputType >( valx00 ) );
          }
        const RealType & val110 = inputImagePtr->GetPixel(basei);

        --basei[0];
        const RealType & val010 = inputImagePtr->GetPixel(basei);
        const RealType & valx10 = val010 + ( val110 - val010 ) * distance0;

        return static_cast< OutputType >( valx00 + ( valx10 - valx00 ) * distance1 );
        }
      }
    else
      {
      if ( distance1 <= 0. )
        {
        if ( distance0 <= 0. ) // interpolate across "z"
          {
          ++basei[2];
          if ( basei[2] > this->m_EndIndex[2] )
            {
            return ( static_cast< OutputType >( val000 ) );
            }
          const RealType & val001 = inputImagePtr->GetPixel(basei);

          return static_cast< OutputType >( val000 + ( val001 - val000 ) * distance2 );
          }
        else // interpolate across "xz"
          {
          ++basei[0];
          if ( basei[0] > this->m_EndIndex[0] ) // interpolate across "z"
            {
            --basei[0];
            ++basei[2];
            if ( basei[2] > this->m_EndIndex[2] )
              {
              return ( static_cast< OutputType >( val000 ) );
              }
            const RealType & val001 = inputImagePtr->GetPixel(basei);

            return static_cast< OutputType >( val000 + ( val001 - val000 ) * distance2 );
            }
          const RealType & val100 = inputImagePtr->GetPixel(basei);

          const RealType & valx00 = val000 + ( val100 - val000 ) * distance0;

          ++basei[2];
          if ( basei[2] > this->m_EndIndex[2] ) // interpolate across "x"
            {
            return ( static_cast< OutputType >( valx00 ) );
            }
          const RealType & val101 = inputImagePtr->GetPixel(basei);

          --basei[0];
          const RealType & val001 = inputImagePtr->GetPixel(basei);

          const RealType & valx01 = val001 + ( val101 - val001 ) * distance0;

          return static_cast< OutputType >( valx00 + ( valx01 - valx00 ) * distance2 );
          }
        }
      else if ( distance0 <= 0. ) // interpolate across "yz"
        {
        ++basei[1];
        if ( basei[1] > this->m_EndIndex[1] ) // interpolate across "z"
          {
          --basei[1];
          ++basei[2];
          if ( basei[2] > this->m_EndIndex[2] )
            {
            return ( static_cast< OutputType >( val000 ) );
            }
          const RealType & val001 = inputImagePtr->GetPixel(basei);

          return static_cast< OutputType >( val000 + ( val001 - val000 ) * distance2 );
          }
        const RealType & val010 = inputImagePtr->GetPixel(basei);

        const RealType & val0x0 = val000 + ( val010 - val000 ) * distance1;

        ++basei[2];
        if ( basei[2] > this->m_EndIndex[2] ) // interpolate across "y"
          {
          return ( static_cast< OutputType >( val0x0 ) );
          }
        const RealType & val011 = inputImagePtr->GetPixel(basei);

        --basei[1];
        const RealType & val001 = inputImagePtr->GetPixel(basei);

        const RealType & val0x1 = val001 + ( val011 - val001 ) * distance1;

        return static_cast< OutputType >( val0x0 + ( val0x1 - val0x0 ) * distance2 );
        }
      else // interpolate across "xyz"
        {
        ++basei[0];
        if ( basei[0] > this->m_EndIndex[0] ) // interpolate across "yz"
          {
          --basei[0];
          ++basei[1];
          if ( basei[1] > this->m_EndIndex[1] )  // interpolate across "z"
            {
            --basei[1];
            ++basei[2];
            if ( basei[2] > this->m_EndIndex[2] )
              {
              return ( static_cast< OutputType >( val000 ) );
              }
            const RealType & val001 = inputImagePtr->GetPixel(basei);

            return static_cast< OutputType >( val000 + ( val001 - val000 ) * distance2 );
            }
          const RealType & val010 = inputImagePtr->GetPixel(basei);
          const RealType & val0x0 = val000 + ( val010 - val000 ) * distance1;

          ++basei[2];
          if ( basei[2] > this->m_EndIndex[2] ) // interpolate across "y"
            {
            return ( static_cast< OutputType >( val0x0 ) );
            }
          const RealType & val011 = inputImagePtr->GetPixel(basei);

          --basei[1];
          const RealType & val001 = inputImagePtr->GetPixel(basei);

          const RealType & val0x1 = val001 + ( val011 - val001 ) * distance1;

          return static_cast< OutputType >( val0x0 + ( val0x1 - val0x0 ) * distance2 );
          }
        const RealType & val100 = inputImagePtr->GetPixel(basei);

        const RealType & valx00 = val000 + ( val100 - val000 ) * distance0;

        ++basei[1];
        if ( basei[1] > this->m_EndIndex[1] ) // interpolate across "xz"
          {
          --basei[1];
          ++basei[2];
          if ( basei[2] > this->m_EndIndex[2] ) // interpolate across "x"
            {
            return ( static_cast< OutputType >( valx00 ) );
            }
          const RealType & val101 = inputImagePtr->GetPixel(basei);

          --basei[0];
          const RealType & val001 = inputImagePtr->GetPixel(basei);

          const RealType & valx01 = val001 + ( val101 - val001 ) * distance0;

          return static_cast< OutputType >( valx00 + ( valx01 - valx00 ) * distance2 );
          }
        const RealType & val110 = inputImagePtr->GetPixel(basei);

        --basei[0];
        const RealType & val010 = inputImagePtr->GetPixel(basei);

        const RealType & valx10 = val010 + ( val110 - val010 ) * distance0;

        const RealType & valxx0 = valx00 + ( valx10 - valx00 ) * distance1;

        ++basei[2];
        if ( basei[2] > this->m_EndIndex[2] ) // interpolate across "xy"
          {
          return ( static_cast< OutputType >( valxx0 ) );
          }
        const RealType & val011 = inputImagePtr->GetPixel(basei);

        ++basei[0];
        const RealType & val111 = inputImagePtr->GetPixel(basei);

        --basei[1];
        const RealType & val101 = inputImagePtr->GetPixel(basei);

        --basei[0];
        const RealType & val001 = inputImagePtr->GetPixel(basei);

        const RealType & valx01 = val001 + ( val101 - val001 ) * distance0;
        const RealType & valx11 = val011 + ( val111 - val011 ) * distance0;
        const RealType & valxx1 = valx01 + ( valx11 - valx01 ) * distance1;

        return ( static_cast< OutputType >( valxx0 + ( valxx1 - valxx0 ) * distance2 ) );
        }
      }
  }

  inline OutputType EvaluateOptimized(const DispatchBase &,
                                      const ContinuousIndexType & index) const
  {
    return this->EvaluateUnoptimized(index);
  }

  virtual inline OutputType EvaluateUnoptimized(
    const ContinuousIndexType & index) const;
};
} // end namespace itk

#ifndef ITK_MANUAL_INSTANTIATION
#include "itkLinearInterpolateImageFunction.hxx"
#endif

#endif