This file is indexed.

/usr/include/ITK-4.5/itkMahalanobisDistanceMembershipFunction.hxx is in libinsighttoolkit4-dev 4.5.0-3.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
/*=========================================================================
 *
 *  Copyright Insight Software Consortium
 *
 *  Licensed under the Apache License, Version 2.0 (the "License");
 *  you may not use this file except in compliance with the License.
 *  You may obtain a copy of the License at
 *
 *         http://www.apache.org/licenses/LICENSE-2.0.txt
 *
 *  Unless required by applicable law or agreed to in writing, software
 *  distributed under the License is distributed on an "AS IS" BASIS,
 *  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 *  See the License for the specific language governing permissions and
 *  limitations under the License.
 *
 *=========================================================================*/
#ifndef __itkMahalanobisDistanceMembershipFunction_hxx
#define __itkMahalanobisDistanceMembershipFunction_hxx

#include "itkMahalanobisDistanceMembershipFunction.h"

#include "vnl/vnl_vector.h"
#include "vnl/vnl_matrix.h"
#include "vnl/algo/vnl_matrix_inverse.h"

namespace itk
{
namespace Statistics
{
template< typename TVector >
MahalanobisDistanceMembershipFunction< TVector >
::MahalanobisDistanceMembershipFunction()
{
  NumericTraits<MeanVectorType>::SetLength(m_Mean, this->GetMeasurementVectorSize());
  m_Mean.Fill(0.0f);

  m_Covariance.SetSize(this->GetMeasurementVectorSize(), this->GetMeasurementVectorSize());
  m_Covariance.SetIdentity();

  m_InverseCovariance = m_Covariance;

  m_CovarianceNonsingular = true;
}

template< typename TVector >
void
MahalanobisDistanceMembershipFunction< TVector >
::SetMean(const MeanVectorType & mean)
{
  if ( this->GetMeasurementVectorSize() )
    {
    MeasurementVectorTraits::Assert(mean,
                                    this->GetMeasurementVectorSize(),
                                    "GaussianMembershipFunction::SetMean(): Size of mean vector specified does not match the size of a measurement vector.");
    }
  else
    {
    // not already set, cache the size
    this->SetMeasurementVectorSize( mean.Size() );
    }

  if ( m_Mean != mean )
    {
    m_Mean = mean;
    this->Modified();
    }
}

template< typename TVector >
void
MahalanobisDistanceMembershipFunction< TVector >
::SetCovariance(const CovarianceMatrixType & cov)
{
  // Sanity check
  if ( cov.GetVnlMatrix().rows() != cov.GetVnlMatrix().cols() )
    {
    itkExceptionMacro(<< "Covariance matrix must be square");
    }
  if ( this->GetMeasurementVectorSize() )
    {
    if ( cov.GetVnlMatrix().rows() != this->GetMeasurementVectorSize() )
      {
      itkExceptionMacro(<< "Length of measurement vectors must be"
                        << " the same as the size of the covariance.");
      }
    }
  else
    {
    // not already set, cache the size
    this->SetMeasurementVectorSize( cov.GetVnlMatrix().rows() );
    }

  if (m_Covariance == cov)
    {
    // no need to copy the matrix, compute the inverse, or the normalization
    return;
    }

  m_Covariance = cov;

  // the inverse of the covariance matrix is first computed by SVD
  vnl_matrix_inverse< double > inv_cov( m_Covariance.GetVnlMatrix() );

  // the determinant is then costless this way
  double det = inv_cov.determinant_magnitude();

  if( det < 0.)
    {
    itkExceptionMacro( << "det( m_Covariance ) < 0" );
    }

  // 1e-6 is an arbitrary value!!!
  const double singularThreshold = 1.0e-6;
  m_CovarianceNonsingular = ( det > singularThreshold );

  if( m_CovarianceNonsingular )
    {
    // allocate the memory for m_InverseCovariance matrix
    m_InverseCovariance.GetVnlMatrix() = inv_cov.inverse();
    }
  else
    {
    // define the inverse to be diagonal with large values along the
    // diagonal. value chosen so (X-M)'inv(C)*(X-M) will usually stay
    // below NumericTraits<double>::max()
    const double aLargeDouble = vcl_pow(NumericTraits<double>::max(), 1.0/3.0)
      / (double) this->GetMeasurementVectorSize();
    m_InverseCovariance.SetSize(this->GetMeasurementVectorSize(), this->GetMeasurementVectorSize());
    m_InverseCovariance.SetIdentity();
    m_InverseCovariance *= aLargeDouble;
    }

  this->Modified();
}

template< typename TVector >
double
MahalanobisDistanceMembershipFunction< TVector >
::Evaluate(const MeasurementVectorType & measurement) const
{
  const MeasurementVectorSizeType measurementVectorSize =
    this->GetMeasurementVectorSize();

  // Our inverse covariance is always well formed. When the covariance
  // is singular, we use a diagonal inverse covariance with a large diagnonal

  // Compute ( y - mean )
  vnl_vector< double > tempVector( measurementVectorSize );

  for ( MeasurementVectorSizeType i = 0; i < measurementVectorSize; ++i )
    {
    tempVector[i] = measurement[i] - m_Mean[i];
    }

  // temp = ( y - mean )^t * InverseCovariance * ( y - mean )
  double temp = dot_product( tempVector,
                             m_InverseCovariance.GetVnlMatrix() * tempVector );

  return temp;
}

template< typename TVector >
void
MahalanobisDistanceMembershipFunction< TVector >
::PrintSelf(std::ostream & os, Indent indent) const
{
  Superclass::PrintSelf(os, indent);

  os << indent << "Mean: " << m_Mean << std::endl;
  os << indent << "Covariance: " << std::endl;
  os << m_Covariance.GetVnlMatrix();
  os << indent << "InverseCovariance: " << std::endl;
  os << indent << m_InverseCovariance.GetVnlMatrix();
  os << indent << "Covariance nonsingular: " <<
    (m_CovarianceNonsingular ? "true" : "false") << std::endl;
}

template< typename TVector >
typename LightObject::Pointer
MahalanobisDistanceMembershipFunction< TVector >
::InternalClone() const
{
  LightObject::Pointer loPtr = Superclass::InternalClone();
  typename Self::Pointer membershipFunction =
    dynamic_cast<Self *>(loPtr.GetPointer());
  if(membershipFunction.IsNull())
    {
    itkExceptionMacro(<< "downcast to type "
                      << this->GetNameOfClass()
                      << " failed.");
    }

  membershipFunction->SetMeasurementVectorSize( this->GetMeasurementVectorSize() );
  membershipFunction->SetMean( this->GetMean() );
  membershipFunction->SetCovariance( this->GetCovariance() );

  return loPtr;
}

} // end namespace Statistics
} // end of namespace itk

#endif