/usr/include/ITK-4.5/itkMahalanobisDistanceMembershipFunction.hxx is in libinsighttoolkit4-dev 4.5.0-3.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 | /*=========================================================================
*
* Copyright Insight Software Consortium
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0.txt
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
*=========================================================================*/
#ifndef __itkMahalanobisDistanceMembershipFunction_hxx
#define __itkMahalanobisDistanceMembershipFunction_hxx
#include "itkMahalanobisDistanceMembershipFunction.h"
#include "vnl/vnl_vector.h"
#include "vnl/vnl_matrix.h"
#include "vnl/algo/vnl_matrix_inverse.h"
namespace itk
{
namespace Statistics
{
template< typename TVector >
MahalanobisDistanceMembershipFunction< TVector >
::MahalanobisDistanceMembershipFunction()
{
NumericTraits<MeanVectorType>::SetLength(m_Mean, this->GetMeasurementVectorSize());
m_Mean.Fill(0.0f);
m_Covariance.SetSize(this->GetMeasurementVectorSize(), this->GetMeasurementVectorSize());
m_Covariance.SetIdentity();
m_InverseCovariance = m_Covariance;
m_CovarianceNonsingular = true;
}
template< typename TVector >
void
MahalanobisDistanceMembershipFunction< TVector >
::SetMean(const MeanVectorType & mean)
{
if ( this->GetMeasurementVectorSize() )
{
MeasurementVectorTraits::Assert(mean,
this->GetMeasurementVectorSize(),
"GaussianMembershipFunction::SetMean(): Size of mean vector specified does not match the size of a measurement vector.");
}
else
{
// not already set, cache the size
this->SetMeasurementVectorSize( mean.Size() );
}
if ( m_Mean != mean )
{
m_Mean = mean;
this->Modified();
}
}
template< typename TVector >
void
MahalanobisDistanceMembershipFunction< TVector >
::SetCovariance(const CovarianceMatrixType & cov)
{
// Sanity check
if ( cov.GetVnlMatrix().rows() != cov.GetVnlMatrix().cols() )
{
itkExceptionMacro(<< "Covariance matrix must be square");
}
if ( this->GetMeasurementVectorSize() )
{
if ( cov.GetVnlMatrix().rows() != this->GetMeasurementVectorSize() )
{
itkExceptionMacro(<< "Length of measurement vectors must be"
<< " the same as the size of the covariance.");
}
}
else
{
// not already set, cache the size
this->SetMeasurementVectorSize( cov.GetVnlMatrix().rows() );
}
if (m_Covariance == cov)
{
// no need to copy the matrix, compute the inverse, or the normalization
return;
}
m_Covariance = cov;
// the inverse of the covariance matrix is first computed by SVD
vnl_matrix_inverse< double > inv_cov( m_Covariance.GetVnlMatrix() );
// the determinant is then costless this way
double det = inv_cov.determinant_magnitude();
if( det < 0.)
{
itkExceptionMacro( << "det( m_Covariance ) < 0" );
}
// 1e-6 is an arbitrary value!!!
const double singularThreshold = 1.0e-6;
m_CovarianceNonsingular = ( det > singularThreshold );
if( m_CovarianceNonsingular )
{
// allocate the memory for m_InverseCovariance matrix
m_InverseCovariance.GetVnlMatrix() = inv_cov.inverse();
}
else
{
// define the inverse to be diagonal with large values along the
// diagonal. value chosen so (X-M)'inv(C)*(X-M) will usually stay
// below NumericTraits<double>::max()
const double aLargeDouble = vcl_pow(NumericTraits<double>::max(), 1.0/3.0)
/ (double) this->GetMeasurementVectorSize();
m_InverseCovariance.SetSize(this->GetMeasurementVectorSize(), this->GetMeasurementVectorSize());
m_InverseCovariance.SetIdentity();
m_InverseCovariance *= aLargeDouble;
}
this->Modified();
}
template< typename TVector >
double
MahalanobisDistanceMembershipFunction< TVector >
::Evaluate(const MeasurementVectorType & measurement) const
{
const MeasurementVectorSizeType measurementVectorSize =
this->GetMeasurementVectorSize();
// Our inverse covariance is always well formed. When the covariance
// is singular, we use a diagonal inverse covariance with a large diagnonal
// Compute ( y - mean )
vnl_vector< double > tempVector( measurementVectorSize );
for ( MeasurementVectorSizeType i = 0; i < measurementVectorSize; ++i )
{
tempVector[i] = measurement[i] - m_Mean[i];
}
// temp = ( y - mean )^t * InverseCovariance * ( y - mean )
double temp = dot_product( tempVector,
m_InverseCovariance.GetVnlMatrix() * tempVector );
return temp;
}
template< typename TVector >
void
MahalanobisDistanceMembershipFunction< TVector >
::PrintSelf(std::ostream & os, Indent indent) const
{
Superclass::PrintSelf(os, indent);
os << indent << "Mean: " << m_Mean << std::endl;
os << indent << "Covariance: " << std::endl;
os << m_Covariance.GetVnlMatrix();
os << indent << "InverseCovariance: " << std::endl;
os << indent << m_InverseCovariance.GetVnlMatrix();
os << indent << "Covariance nonsingular: " <<
(m_CovarianceNonsingular ? "true" : "false") << std::endl;
}
template< typename TVector >
typename LightObject::Pointer
MahalanobisDistanceMembershipFunction< TVector >
::InternalClone() const
{
LightObject::Pointer loPtr = Superclass::InternalClone();
typename Self::Pointer membershipFunction =
dynamic_cast<Self *>(loPtr.GetPointer());
if(membershipFunction.IsNull())
{
itkExceptionMacro(<< "downcast to type "
<< this->GetNameOfClass()
<< " failed.");
}
membershipFunction->SetMeasurementVectorSize( this->GetMeasurementVectorSize() );
membershipFunction->SetMean( this->GetMean() );
membershipFunction->SetCovariance( this->GetCovariance() );
return loPtr;
}
} // end namespace Statistics
} // end of namespace itk
#endif
|