This file is indexed.

/usr/include/ITK-4.5/itkMahalanobisDistanceThresholdImageFunction.hxx is in libinsighttoolkit4-dev 4.5.0-3.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
/*=========================================================================
 *
 *  Copyright Insight Software Consortium
 *
 *  Licensed under the Apache License, Version 2.0 (the "License");
 *  you may not use this file except in compliance with the License.
 *  You may obtain a copy of the License at
 *
 *         http://www.apache.org/licenses/LICENSE-2.0.txt
 *
 *  Unless required by applicable law or agreed to in writing, software
 *  distributed under the License is distributed on an "AS IS" BASIS,
 *  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 *  See the License for the specific language governing permissions and
 *  limitations under the License.
 *
 *=========================================================================*/
#ifndef __itkMahalanobisDistanceThresholdImageFunction_hxx
#define __itkMahalanobisDistanceThresholdImageFunction_hxx

#include "itkMahalanobisDistanceThresholdImageFunction.h"

namespace itk
{
template< typename TInputImage, typename TCoordRep >
MahalanobisDistanceThresholdImageFunction< TInputImage, TCoordRep >
::MahalanobisDistanceThresholdImageFunction()
{
  m_Threshold = NumericTraits< double >::Zero;
  m_MahalanobisDistanceMembershipFunction =
    MahalanobisDistanceFunctionType::New();
}

template< typename TInputImage, typename TCoordRep >
void
MahalanobisDistanceThresholdImageFunction< TInputImage, TCoordRep >
::SetMean(const MeanVectorType & mean)
{
  // Cache the mean
  m_Mean = mean;

  // Set the mean on the membership function
  typename MahalanobisDistanceFunctionType::MeanVectorType m;
  NumericTraits<typename MahalanobisDistanceFunctionType::MeanVectorType>::SetLength(m, mean.size());
  for (unsigned int i=0; i < mean.size(); ++i)
    {
    m[i] = mean[i];
    }
  m_MahalanobisDistanceMembershipFunction->SetMean(m);
}

template< typename TInputImage, typename TCoordRep >
void
MahalanobisDistanceThresholdImageFunction< TInputImage, TCoordRep >
::SetCovariance(const CovarianceMatrixType & covariance)
{
  // Cache the covariance
  m_Covariance = covariance;

  // Set the covariance on the membership function
  typename MahalanobisDistanceFunctionType::CovarianceMatrixType c;
  c = covariance;
  m_MahalanobisDistanceMembershipFunction->SetCovariance(c);
}

template< typename TInputImage, typename TCoordRep >
const typename
MahalanobisDistanceThresholdImageFunction< TInputImage, TCoordRep >::MeanVectorType &
MahalanobisDistanceThresholdImageFunction< TInputImage, TCoordRep >
::GetMean() const
{
  // return the cache mean (mean set on the membership function
  // matches by design)
  return m_Mean;
}

template< typename TInputImage, typename TCoordRep >
const typename
MahalanobisDistanceThresholdImageFunction< TInputImage, TCoordRep >::CovarianceMatrixType &
MahalanobisDistanceThresholdImageFunction< TInputImage, TCoordRep >
::GetCovariance() const
{
  // return the cache covariance (covariance set on the membership function
  // matches by design)
  return m_Covariance;
}

template< typename TInputImage, typename TCoordRep >
bool
MahalanobisDistanceThresholdImageFunction< TInputImage, TCoordRep >
::Evaluate(const PointType & point) const
{
  IndexType index;

  this->ConvertPointToNearestIndex(point, index);
  return ( this->EvaluateAtIndex(index) );
}

template< typename TInputImage, typename TCoordRep >
bool
MahalanobisDistanceThresholdImageFunction< TInputImage, TCoordRep >
::EvaluateAtContinuousIndex(const ContinuousIndexType & index) const
{
  IndexType nindex;

  this->ConvertContinuousIndexToNearestIndex (index, nindex);
  return this->EvaluateAtIndex(nindex);
}

template< typename TInputImage, typename TCoordRep >
bool
MahalanobisDistanceThresholdImageFunction< TInputImage, TCoordRep >
::EvaluateAtIndex(const IndexType & index) const
{
  double mahalanobisDistance = this->EvaluateDistanceAtIndex(index);

  return ( mahalanobisDistance <= m_Threshold );
}

template< typename TInputImage, typename TCoordRep >
double
MahalanobisDistanceThresholdImageFunction< TInputImage, TCoordRep >
::EvaluateDistance(const PointType & point) const
{
  IndexType index;

  this->ConvertPointToNearestIndex(point, index);
  const double mahalanobisDistance = this->EvaluateDistanceAtIndex(index);
  return mahalanobisDistance;
}

template< typename TInputImage, typename TCoordRep >
double
MahalanobisDistanceThresholdImageFunction< TInputImage, TCoordRep >
::EvaluateDistanceAtIndex(const IndexType & index) const
{
  double mahalanobisDistanceSquared =
    m_MahalanobisDistanceMembershipFunction->Evaluate(
      this->GetInputImage()->GetPixel(index) );

  double mahalanobisDistance;

  // Deal with cases that are barely negative.
  // In theory they should never appear, but
  // they may happen and would produce NaNs
  // in the vcl_sqrt
  if ( mahalanobisDistanceSquared < 0.0 )
    {
    mahalanobisDistance = 0.0;
    }
  else
    {
    mahalanobisDistance = vcl_sqrt(mahalanobisDistanceSquared);
    }

  return mahalanobisDistance;
}

template< typename TInputImage, typename TCoordRep >
void
MahalanobisDistanceThresholdImageFunction< TInputImage, TCoordRep >
::PrintSelf(std::ostream & os, Indent indent) const
{
  Superclass::PrintSelf(os, indent);

  os << indent << "Threshold: " << m_Threshold << std::endl;
  os << indent << "Mean: " << m_Mean << std::endl;
  os << indent << "Covariance: " << m_Covariance << std::endl;
  os << indent << "MahalanobisDistanceMembershipFunction: " << m_MahalanobisDistanceMembershipFunction << std::endl;
}
} // end namespace itk

#endif