/usr/include/ITK-4.5/itkManifoldParzenWindowsPointSetFunction.h is in libinsighttoolkit4-dev 4.5.0-3.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 | /*=========================================================================
*
* Copyright Insight Software Consortium
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0.txt
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
*=========================================================================*/
#ifndef __itkManifoldParzenWindowsPointSetFunction_h
#define __itkManifoldParzenWindowsPointSetFunction_h
#include "itkPointSetFunction.h"
#include "itkGaussianMembershipFunction.h"
#include "itkMatrix.h"
#include "itkPointSet.h"
#include "itkPointsLocator.h"
#include "itkVector.h"
#include <vector>
namespace itk
{
/** \class ManifoldParzenWindowsPointSetFunction
* \brief Point set function based on n-dimensional parzen windowing.
*
* This class allows evaluating a function derived from a point set
* by creating a continuous distribution using manifold parzen windowing.
* Each point is associated with a Gaussian and local shape can
* be encoded in the covariance matrix.
*
* \ingroup ITKMetricsv4
*/
template <typename TPointSet, typename TOutput = double, typename TCoordRep = double>
class ManifoldParzenWindowsPointSetFunction
: public PointSetFunction<TPointSet, TOutput, TCoordRep>
{
public:
typedef ManifoldParzenWindowsPointSetFunction Self;
typedef PointSetFunction<TPointSet, TOutput, TCoordRep> Superclass;
typedef SmartPointer<Self> Pointer;
typedef SmartPointer<const Self> ConstPointer;
/** Method for creation through the object factory. */
itkNewMacro(Self);
/** Extract dimension from output image. */
itkStaticConstMacro( PointDimension, unsigned int, TPointSet::PointDimension );
typedef typename Superclass::InputPointSetType InputPointSetType;
typedef typename Superclass::InputPointType InputPointType;
/** Point set typedef support. */
typedef TPointSet PointSetType;
typedef typename PointSetType::PointType PointType;
typedef typename PointSetType::PointsContainer PointsContainer;
typedef typename PointsContainer::ElementIdentifier PointIdentifier;
/** Other typedef */
typedef TOutput RealType;
typedef TOutput OutputType;
typedef TCoordRep CoordRepType;
/** Typedef for points locator class to speed up finding neighboring points */
typedef PointsLocator< PointsContainer> PointsLocatorType;
typedef typename PointsLocatorType::NeighborsIdentifierType NeighborsIdentifierType;
typedef typename Statistics::
GaussianMembershipFunction<PointType> GaussianType;
typedef typename GaussianType::Pointer GaussianPointer;
typedef typename GaussianType::ConstPointer GaussianConstPointer;
typedef std::vector<GaussianPointer> GaussianContainerType;
typedef typename GaussianType::CovarianceMatrixType CovarianceMatrixType;
/** Helper functions */
/**
* Set the covariance K neighborhood. For a given point the closest K
* points are used to construct the corresponding covariance reflecting
* the local point set structure. Default = 5.
*/
itkSetMacro( CovarianceKNeighborhood, unsigned int );
/** Get the covariance k neighborhood size. Default = 5.*/
itkGetConstMacro( CovarianceKNeighborhood, unsigned int );
/**
* Set the evaluation K neighborhood. To evaluate the the manifold parzen
* windows function, one could sum the value contributed by each Gaussian or
* to speed calculation, we could sum the value contributed by the nearest
* K Gaussians. Default = 50.
*/
itkSetMacro( EvaluationKNeighborhood, unsigned int );
/** Get the evaluation K neighborhood. Default = 50.*/
itkGetConstMacro( EvaluationKNeighborhood, unsigned int );
/**
* Set the regularization sigma. To avoid singular covariance matrices,
* a regularization sigma value is added to the diagonal. Default = 1.0.
*/
itkSetMacro( RegularizationSigma, RealType );
/** Get the regularization sigma. Default = 1.0. */
itkGetConstMacro( RegularizationSigma, RealType );
/**
* Set the kernel sigma. In constructing the covariance from k neighbors,
* a Gaussian is used to weight more strongly the closest neighbors. This
* defines that weighting Gaussian. Default = 1.0.
*/
itkSetMacro( KernelSigma, RealType );
/** Get the kernel sigma. Default = 1.0. */
itkGetConstMacro( KernelSigma, RealType );
/**
* Normalize covariance by the sum of the weights of the nearest neighbors.
* Default = true.
*/
itkSetMacro( Normalize, bool );
/**
* Normalize covariance by the sum of the weights of the nearest neighbors.
* Default = true.
*/
itkGetConstMacro( Normalize, bool );
/**
* Normalize covariance by the sum of the weights of the nearest neighbors.
* Default = true.
*/
itkBooleanMacro( Normalize );
/**
* Construct covariances using the local neighborhood point set structure.
* Otherwise, the Gaussian for each point is characterized by the value
* of m_RegularizationSigma. Default = true.
*/
itkSetMacro( UseAnisotropicCovariances, bool );
/**
* Construct covariances using the local neighborhood point set structure.
* Otherwise, the Gaussian for each point is characterized by the value
* of m_RegularizationSigma. Default = true.
*/
itkGetConstMacro( UseAnisotropicCovariances, bool );
/**
* Construct covariances using the local neighborhood point set structure.
* Otherwise, the Gaussian for each point is characterized by the value
* of m_RegularizationSigma. Default = true.
*/
itkBooleanMacro( UseAnisotropicCovariances );
/** Set the input point set */
virtual void SetInputPointSet( const InputPointSetType * );
/** Evaluate function value at specified point */
virtual TOutput Evaluate( const InputPointType & ) const;
/** Get Gaussian corresponding to a specific point */
GaussianConstPointer GetGaussian( PointIdentifier ) const;
/** Get the points locator describing the point set neighborhood */
itkGetModifiableObjectMacro(PointsLocator, PointsLocatorType );
protected:
ManifoldParzenWindowsPointSetFunction();
virtual ~ManifoldParzenWindowsPointSetFunction();
void PrintSelf( std::ostream& os, Indent indent ) const;
void GenerateData();
private:
//purposely not implemented
ManifoldParzenWindowsPointSetFunction( const Self& );
void operator=( const Self& );
typename PointsLocatorType::Pointer m_PointsLocator;
unsigned int m_CovarianceKNeighborhood;
unsigned int m_EvaluationKNeighborhood;
RealType m_RegularizationSigma;
RealType m_KernelSigma;
GaussianContainerType m_Gaussians;
bool m_Normalize;
bool m_UseAnisotropicCovariances;
};
} // end namespace itk
#ifndef ITK_MANUAL_INSTANTIATION
#include "itkManifoldParzenWindowsPointSetFunction.hxx"
#endif
#endif
|