This file is indexed.

/usr/include/ITK-4.5/itkMath.h is in libinsighttoolkit4-dev 4.5.0-3.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
/*=========================================================================
 *
 *  Copyright Insight Software Consortium
 *
 *  Licensed under the Apache License, Version 2.0 (the "License");
 *  you may not use this file except in compliance with the License.
 *  You may obtain a copy of the License at
 *
 *         http://www.apache.org/licenses/LICENSE-2.0.txt
 *
 *  Unless required by applicable law or agreed to in writing, software
 *  distributed under the License is distributed on an "AS IS" BASIS,
 *  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 *  See the License for the specific language governing permissions and
 *  limitations under the License.
 *
 *=========================================================================*/
/*=========================================================================
 *
 *  Portions of this file are subject to the VTK Toolkit Version 3 copyright.
 *
 *  Copyright (c) Ken Martin, Will Schroeder, Bill Lorensen
 *
 *  For complete copyright, license and disclaimer of warranty information
 *  please refer to the NOTICE file at the top of the ITK source tree.
 *
 *=========================================================================*/
#ifndef __itkMath_h
#define __itkMath_h

#include "itkIntTypes.h"
#include "itkMathDetail.h"
#include "itkConceptChecking.h"

namespace itk
{
namespace Math
{
// These constants originate from VXL's vnl_math.h. They have been
// moved here to improve visibility, and to ensure that the constants
// are available during compile time ( as opposed to static const
// member vaiables ).

/** \brief \f[e\f] The base of the natural logarithm or Euler's number */
static const double e                = 2.7182818284590452354;
/** \brief  \f[ \log_2 e \f] */
static const double log2e            = 1.4426950408889634074;
/** \brief \f[ \log_{10} e \f] */
static const double log10e           = 0.43429448190325182765;
/** \brief \f[ \log_e 2 \f] */
static const double ln2              = 0.69314718055994530942;
/** \brief \f[ \log_e 10 \f] */
static const double ln10             = 2.30258509299404568402;
/** \brief \f[ \pi \f]  */
static const double pi               = 3.14159265358979323846;
/** \brief \f[ \frac{\pi}{2} \f]  */
static const double pi_over_2        = 1.57079632679489661923;
/** \brief \f[ \frac{\pi}{4} \f]  */
static const double pi_over_4        = 0.78539816339744830962;
/** \brief \f[ \frac{1}{\pi} \f]  */
static const double one_over_pi      = 0.31830988618379067154;
/** \brief \f[ \frac{2}{\pi} \f]  */
static const double two_over_pi      = 0.63661977236758134308;
/** \brief \f[ \frac{2}{\sqrt{\pi}} \f]  */
static const double two_over_sqrtpi  = 1.12837916709551257390;
/** \brief \f[ \frac{2}{\sqrt{2\pi}} \f]  */
static const double one_over_sqrt2pi = 0.39894228040143267794;
/** \brief \f[ \sqrt{2} \f]  */
static const double sqrt2            = 1.41421356237309504880;
/** \brief \f[ \sqrt{ \frac{1}{2}} \f] */
static const double sqrt1_2          = 0.70710678118654752440;

/** A useful macro to generate a template floating point to integer
 *  conversion templated on the return type and using either the 32
 *  bit, the 64 bit or the vanilla version */
#define itkTemplateFloatingToIntegerMacro(name)                                     \
  template< typename TReturn, typename TInput >                                     \
  inline TReturn name(TInput x)                                                     \
    {                                                                               \
                                                                                    \
    if ( sizeof( TReturn ) <= 4 )                                                   \
      {                                                                             \
      return static_cast< TReturn >( Detail::name##_32(x) );                      \
      }                                                                             \
    else if ( sizeof( TReturn ) <= 8 )                                              \
      {                                                                             \
      return static_cast< TReturn >( Detail::name##_64(x) );                      \
      }                                                                             \
    else                                                                            \
      {                                                                             \
      return static_cast< TReturn >( Detail::name##_base< TReturn, TInput >(x) ); \
      }                                                                             \
    }

/** \brief Round towards nearest integer
 *
 *  \tparam TReturn must be an integer type
 *  \tparam TInput must be float or double
 *
 *          halfway cases are rounded towards the nearest even
 *          integer, e.g.
 *  \code
 *          RoundHalfIntegerToEven( 1.5) ==  2
 *          RoundHalfIntegerToEven(-1.5) == -2
 *          RoundHalfIntegerToEven( 2.5) ==  2
 *          RoundHalfIntegerToEven( 3.5) ==  4
 *  \endcode
 *
 *  The behavior of overflow is undefined due to numerous implementations.
 *
 *  \warning We assume that the rounding mode is not changed from the default
 *  one (or at least that it is always restored to the default one).
 */
itkTemplateFloatingToIntegerMacro(RoundHalfIntegerToEven);

/** \brief Round towards nearest integer
 *
 *  \tparam TReturn must be an integer type
 *  \tparam TInput must be float or double
 *
 *          halfway cases are rounded upward, e.g.
 *  \code
 *          RoundHalfIntegerUp( 1.5) ==  2
 *          RoundHalfIntegerUp(-1.5) == -1
 *          RoundHalfIntegerUp( 2.5) ==  3
 *  \endcode
 *
 *  The behavior of overflow is undefined due to numerous implementations.
 *
 *  \warning The argument absolute value must be less than
 *  NumbericTraits<TReturn>::max()/2 for RoundHalfIntegerUp to be
 *  guaranteed to work.
 *
 *  \warning We also assume that the rounding mode is not changed from
 *  the default one (or at least that it is always restored to the
 *  default one).
 */
itkTemplateFloatingToIntegerMacro(RoundHalfIntegerUp);

/** \brief Round towards nearest integer (This is a synonym for RoundHalfIntegerUp)
 *
 *  \tparam TReturn must be an integer type
 *  \tparam TInput must be float or double
 *
 *  \sa RoundHalfIntegerUp<TReturn, TInput>()
 */
template< typename TReturn, typename TInput >
inline TReturn Round(TInput x) { return RoundHalfIntegerUp< TReturn, TInput >(x); }

/** \brief Round towards minus infinity
 *
 *  The behavior of overflow is undefined due to numerous implementations.
 *
 *  \warning argument absolute value must be less than
 *  NumbericTraits<TReturn>::max()/2 for vnl_math_floor to be
 *  guaranteed to work.
 *
 *  \warning We also assume that the rounding mode is not changed from
 *  the default one (or at least that it is always restored to the
 *  default one).
 */
itkTemplateFloatingToIntegerMacro(Floor);

/** \brief Round towards plus infinity
 *
 *  The behavior of overflow is undefined due to numerous implementations.
 *
 *  \warning argument absolute value must be less than INT_MAX/2
 *  for vnl_math_ceil to be guaranteed to work.
 *  \warning We also assume that the rounding mode is not changed from
 *  the default one (or at least that it is always restored to the
 *  default one).
 */
itkTemplateFloatingToIntegerMacro(Ceil);

#undef  itkTemplateFloatingToIntegerMacro

template< typename TReturn, typename TInput >
inline TReturn CastWithRangeCheck(TInput x)
{
#ifdef ITK_USE_CONCEPT_CHECKING
  itkConceptMacro( OnlyDefinedForIntegerTypes1, ( itk::Concept::IsInteger< TReturn > ) );
  itkConceptMacro( OnlyDefinedForIntegerTypes2, ( itk::Concept::IsInteger< TInput > ) );
#endif // ITK_USE_CONCEPT_CHECKING

  TReturn ret = static_cast< TReturn >( x );
  if ( sizeof( TReturn ) > sizeof( TInput )
       && !( !itk::NumericTraits< TReturn >::is_signed &&  itk::NumericTraits< TInput >::is_signed ) )
    {
    // if the output type is bigger and we are not converting a signed
    // integer to an unsigned integer then we have no problems
    return ret;
    }
  else if ( sizeof( TReturn ) >= sizeof( TInput ) )
    {
    if ( itk::NumericTraits< TInput >::IsPositive(x) != itk::NumericTraits< TReturn >::IsPositive(ret) )
      {
      itk::RangeError _e(__FILE__, __LINE__);
      throw _e;
      }
    }
  else if ( static_cast< TInput >( ret ) != x
            || ( itk::NumericTraits< TInput >::IsPositive(x) != itk::NumericTraits< TReturn >::IsPositive(ret) ) )
    {
    itk::RangeError _e(__FILE__, __LINE__);
    throw _e;
    }
  return ret;
}

/** \brief Return the signed distance in ULPs (units in the last place) between two floats.
 *
 * This is the signed distance, i.e., if x1 > x2, then the result is positive.
 *
 * \sa FloatAlmostEqual
 */
template <typename T>
inline typename Detail::FloatIEEE<T>::IntType
FloatDifferenceULP( T x1, T x2 )
{
  Detail::FloatIEEE<T> x1f(x1);
  Detail::FloatIEEE<T> x2f(x2);
  return x1f.AsULP() - x2f.AsULP();
}

/** \brief Compare two floats and return if they are effectively equal.
 *
 * Determining when floats are almost equal is difficult because of their
 * IEEE bit representation.  This function uses the integer representation of
 * the float to determine if they are almost equal.
 *
 * The implementation is based off the explanation in the white papers:
 *
 * - http://randomascii.wordpress.com/2012/02/25/comparing-floating-point-numbers-2012-edition/
 * - http://www.cygnus-software.com/papers/comparingfloats/comparingfloats.htm
 *
 * This function is not a cure-all, and reading those articles is important
 * to understand its appropriate use in the context of ULPs, zeros, subnormals,
 * infinities, and NANs.  For example, it is preferable to use this function on
 * two floats directly instead of subtracting them and comparing them to zero.
 *
 * The tolerance is specified in ULPs (units in the last place), i.e. how many
 * floats there are in between the numbers.  Therefore, the tolerance depends on
 * the magnitude of the values that are being compared.  A second tolerance is
 * a maximum difference allowed, which is important when comparing numbers close to
 * zero.
 *
 * A NAN compares as not equal to a number, but two NAN's may compare as equal
 * to each other.
 *
 * \param x1                    first floating value to compare
 * \param x2                    second floating values to compare
 * \param maxUlps               maximum units in the last place to be considered equal
 * \param maxAbsoluteDifference maximum absolute difference to be considered equal
 */
template <typename T>
inline bool
FloatAlmostEqual( T x1, T x2,
  typename Detail::FloatIEEE<T>::IntType maxUlps = 4,
  typename Detail::FloatIEEE<T>::FloatType maxAbsoluteDifference = 0.1*NumericTraits<T>::epsilon() )
{
  // Check if the numbers are really close -- needed
  // when comparing numbers near zero.
  const T absDifference = vcl_abs(x1 - x2);
  if ( absDifference <= maxAbsoluteDifference )
    {
    return true;
    }

  typename Detail::FloatIEEE<T>::IntType
    ulps = FloatDifferenceULP(x1, x2);
  if(ulps < 0)
    {
    ulps = -ulps;
    }
  return ulps <= maxUlps;
}

} // end namespace Math
} // end namespace itk
#endif // end of itkMath.h