This file is indexed.

/usr/include/ITK-4.5/itkMatrixOffsetTransformBase.h is in libinsighttoolkit4-dev 4.5.0-3.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
/*=========================================================================
 *
 *  Copyright Insight Software Consortium
 *
 *  Licensed under the Apache License, Version 2.0 (the "License");
 *  you may not use this file except in compliance with the License.
 *  You may obtain a copy of the License at
 *
 *         http://www.apache.org/licenses/LICENSE-2.0.txt
 *
 *  Unless required by applicable law or agreed to in writing, software
 *  distributed under the License is distributed on an "AS IS" BASIS,
 *  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 *  See the License for the specific language governing permissions and
 *  limitations under the License.
 *
 *=========================================================================*/
#ifndef __itkMatrixOffsetTransformBase_h
#define __itkMatrixOffsetTransformBase_h


#include "itkMacro.h"
#include "itkMatrix.h"
#include "itkTransform.h"

#include <iostream>

namespace itk
{
/** \class MatrixOffsetTransformBase
 * \brief Matrix and Offset transformation of a vector space (e.g. space coordinates)
 *
 * This class serves as a base class for transforms that can be expressed
 * as a linear transformation plus a constant offset (e.g., affine, similarity
 * and rigid transforms).   This base class also provides the concept of
 * using a center of rotation and a translation instead of an offset.
 *
 * As derived instances of this class are specializations of an affine
 * transform, any two of these transformations may be composed and the result
 * is an affine transformation.  However, the order is important.
 * Given two affine transformations T1 and T2, we will say that
 * "precomposing T1 with T2" yields the transformation which applies
 * T1 to the source, and then applies T2 to that result to obtain the
 * target.  Conversely, we will say that "postcomposing T1 with T2"
 * yields the transformation which applies T2 to the source, and then
 * applies T1 to that result to obtain the target.  (Whether T1 or T2
 * comes first lexicographically depends on whether you choose to
 * write mappings from right-to-left or vice versa; we avoid the whole
 * problem by referring to the order of application rather than the
 * textual order.)
 *
 * \tparam ScalarT            The type to be used for scalar numeric values.  Either
 *    float or double.
 *
 * \tparam NInputDimensions   The number of dimensions of the input vector space.
 *
 * \tparam NOutputDimensions  The number of dimensions of the output vector space.
 *
 * This class provides several methods for setting the matrix and offset
 * defining the transform. To support the registration framework, the
 * transform parameters can also be set as an Array<double> of size
 * (NInputDimension + 1) * NOutputDimension using method SetParameters().
 * The first (NOutputDimension x NInputDimension) parameters defines the
 * matrix in row-major order (where the column index varies the fastest).
 * The last NOutputDimension parameters defines the translation
 * in each dimensions.
 *
 * \ingroup ITKTransform
 */

template <
  typename TScalar = double,         // Data type for scalars
  unsigned int NInputDimensions = 3,  // Number of dimensions in the input space
  unsigned int NOutputDimensions = 3>
// Number of dimensions in the output space
class MatrixOffsetTransformBase :
  public Transform<TScalar, NInputDimensions, NOutputDimensions>
{
public:
  /** Standard typedefs   */
  typedef MatrixOffsetTransformBase Self;
  typedef Transform<TScalar,
                    NInputDimensions,
                    NOutputDimensions>        Superclass;

  typedef SmartPointer<Self>       Pointer;
  typedef SmartPointer<const Self> ConstPointer;

  /** Run-time type information (and related methods).   */
  itkTypeMacro(MatrixOffsetTransformBase, Transform);

  /** New macro for creation of through a Smart Pointer   */
  itkNewMacro(Self);

  /** Dimension of the domain space. */
  itkStaticConstMacro(InputSpaceDimension, unsigned int, NInputDimensions);
  itkStaticConstMacro(OutputSpaceDimension, unsigned int, NOutputDimensions);
  itkStaticConstMacro( ParametersDimension, unsigned int,
                       NOutputDimensions * ( NInputDimensions + 1 ) );

  /** Parameters Type   */
  typedef typename Superclass::ParametersType      ParametersType;
  typedef typename Superclass::ParametersValueType ParametersValueType;

  /** Jacobian Type   */
  typedef typename Superclass::JacobianType JacobianType;

  /** Transform category type. */
  typedef typename Superclass::TransformCategoryType TransformCategoryType;

  /** Standard scalar type for this class */
  typedef typename Superclass::ScalarType ScalarType;

  /** Standard vector type for this class   */
  typedef Vector<TScalar,
                 itkGetStaticConstMacro(InputSpaceDimension)>  InputVectorType;
  typedef Vector<TScalar,
                 itkGetStaticConstMacro(OutputSpaceDimension)> OutputVectorType;
  typedef typename OutputVectorType::ValueType OutputVectorValueType;

  /** Standard covariant vector type for this class   */
  typedef CovariantVector<TScalar,
                          itkGetStaticConstMacro(InputSpaceDimension)>
  InputCovariantVectorType;
  typedef CovariantVector<TScalar,
                          itkGetStaticConstMacro(OutputSpaceDimension)>
  OutputCovariantVectorType;

  typedef typename Superclass::InputVectorPixelType  InputVectorPixelType;
  typedef typename Superclass::OutputVectorPixelType OutputVectorPixelType;

  /** Standard diffusion tensor type for this class */
  typedef typename Superclass::InputDiffusionTensor3DType
  InputDiffusionTensor3DType;
  typedef typename Superclass::OutputDiffusionTensor3DType
  OutputDiffusionTensor3DType;

  /** Standard tensor type for this class */
  typedef typename Superclass::InputSymmetricSecondRankTensorType
  InputSymmetricSecondRankTensorType;
  typedef typename Superclass::OutputSymmetricSecondRankTensorType
  OutputSymmetricSecondRankTensorType;

  typedef CovariantVector<TScalar, InputDiffusionTensor3DType::Dimension>
  InputTensorEigenVectorType;

  /** Standard vnl_vector type for this class   */
  typedef vnl_vector_fixed<TScalar,
                           itkGetStaticConstMacro(InputSpaceDimension)>
  InputVnlVectorType;
  typedef vnl_vector_fixed<TScalar,
                           itkGetStaticConstMacro(OutputSpaceDimension)>
  OutputVnlVectorType;

  /** Standard coordinate point type for this class   */
  typedef Point<TScalar,
                itkGetStaticConstMacro(InputSpaceDimension)>
  InputPointType;
  typedef typename InputPointType::ValueType InputPointValueType;
  typedef Point<TScalar,
                itkGetStaticConstMacro(OutputSpaceDimension)>
  OutputPointType;
  typedef typename OutputPointType::ValueType OutputPointValueType;

  /** Standard matrix type for this class   */
  typedef Matrix<TScalar, itkGetStaticConstMacro(OutputSpaceDimension),
                 itkGetStaticConstMacro(InputSpaceDimension)>
  MatrixType;
  typedef typename MatrixType::ValueType MatrixValueType;

  /** Standard inverse matrix type for this class   */
  typedef Matrix<TScalar, itkGetStaticConstMacro(InputSpaceDimension),
                 itkGetStaticConstMacro(OutputSpaceDimension)>
  InverseMatrixType;

  typedef InputPointType CenterType;

  typedef OutputVectorType               OffsetType;
  typedef typename OffsetType::ValueType OffsetValueType;

  typedef OutputVectorType TranslationType;

  typedef typename TranslationType::ValueType TranslationValueType;

  /** Base inverse transform type. This type should not be changed to the
   * concrete inverse transform type or inheritance would be lost. */
  typedef typename Superclass::InverseTransformBaseType InverseTransformBaseType;
  typedef typename InverseTransformBaseType::Pointer    InverseTransformBasePointer;

  /** Set the transformation to an Identity
   *
   * This sets the matrix to identity and the Offset to null. */
  virtual void SetIdentity(void);

  /** Indicates the category transform.
   *  e.g. an affine transform, or a local one, e.g. a deformation field.
   */
  virtual TransformCategoryType GetTransformCategory() const
  {
    return Self::Linear;
  }

  /** Set matrix of an MatrixOffsetTransformBase
   *
   * This method sets the matrix of an MatrixOffsetTransformBase to a
   * value specified by the user.
   *
   * This updates the Offset wrt to current translation
   * and center.  See the warning regarding offset-versus-translation
   * in the documentation for SetCenter.
   *
   * To define an affine transform, you must set the matrix,
   * center, and translation OR the matrix and offset */
  virtual void SetMatrix(const MatrixType & matrix)
  {
    m_Matrix = matrix; this->ComputeOffset();
    this->ComputeMatrixParameters();
    m_MatrixMTime.Modified(); this->Modified(); return;
  }

  /** Get matrix of an MatrixOffsetTransformBase
   *
   * This method returns the value of the matrix of the
   * MatrixOffsetTransformBase.
   * To define an affine transform, you must set the matrix,
   * center, and translation OR the matrix and offset */

  virtual const MatrixType & GetMatrix() const
  {
    return m_Matrix;
  }

  /** Set offset (origin) of an MatrixOffset TransformBase.
   *
   * This method sets the offset of an MatrixOffsetTransformBase to a
   * value specified by the user.
   * This updates Translation wrt current center.  See the warning regarding
   * offset-versus-translation in the documentation for SetCenter.
   * To define an affine transform, you must set the matrix,
   * center, and translation OR the matrix and offset */
  void SetOffset(const OutputVectorType & offset)
  {
    m_Offset = offset; this->ComputeTranslation();
    this->Modified(); return;
  }

  /** Get offset of an MatrixOffsetTransformBase
   *
   * This method returns the offset value of the MatrixOffsetTransformBase.
   * To define an affine transform, you must set the matrix,
   * center, and translation OR the matrix and offset */
  const OutputVectorType & GetOffset(void) const
  {
    return m_Offset;
  }

  /** Set center of rotation of an MatrixOffsetTransformBase
   *
   * This method sets the center of rotation of an MatrixOffsetTransformBase
   * to a fixed point - for most transforms derived from this class,
   * this point is not a "parameter" of the transform - the exception is that
   * "centered" transforms have center as a parameter during optimization.
   *
   * This method updates offset wrt to current translation and matrix.
   * That is, changing the center changes the transform!
   *
   * WARNING: When using the Center, we strongly recommend only changing the
   * matrix and translation to define a transform.   Changing a transform's
   * center, changes the mapping between spaces - specifically, translation is
   * not changed with respect to that new center, and so the offset is updated
   * to * maintain the consistency with translation.   If a center is not used,
   * or is set before the matrix and the offset, then it is safe to change the
   * offset directly.
   *        As a rule of thumb, if you wish to set the center explicitly, set
   * before Offset computations are done.
   *
   * To define an affine transform, you must set the matrix,
   * center, and translation OR the matrix and offset */
  void SetCenter(const InputPointType & center)
  {
    m_Center = center; this->ComputeOffset();
    this->Modified(); return;
  }

  /** Get center of rotation of the MatrixOffsetTransformBase
   *
   * This method returns the point used as the fixed
   * center of rotation for the MatrixOffsetTransformBase.
   * To define an affine transform, you must set the matrix,
   * center, and translation OR the matrix and offset */
  const InputPointType & GetCenter() const
  {
    return m_Center;
  }

  /** Set translation of an MatrixOffsetTransformBase
   *
   * This method sets the translation of an MatrixOffsetTransformBase.
   * This updates Offset to reflect current translation.
   * To define an affine transform, you must set the matrix,
   * center, and translation OR the matrix and offset */
  void SetTranslation(const OutputVectorType & translation)
  {
    m_Translation = translation; this->ComputeOffset();
    this->Modified(); return;
  }

  /** Get translation component of the MatrixOffsetTransformBase
   *
   * This method returns the translation used after rotation
   * about the center point.
   * To define an affine transform, you must set the matrix,
   * center, and translation OR the matrix and offset */
  const OutputVectorType & GetTranslation(void) const
  {
    return m_Translation;
  }

  /** Set the transformation from a container of parameters.
   * The first (NOutputDimension x NInputDimension) parameters define the
   * matrix and the last NOutputDimension parameters the translation.
   * Offset is updated based on current center. */
  void SetParameters(const ParametersType & parameters);

  /** Get the Transformation Parameters. */
  const ParametersType & GetParameters(void) const;

  /** Set the fixed parameters and update internal transformation. */
  virtual void SetFixedParameters(const ParametersType &);

  /** Get the Fixed Parameters. */
  virtual const ParametersType & GetFixedParameters(void) const;

  /** Compose with another MatrixOffsetTransformBase
   *
   * This method composes self with another MatrixOffsetTransformBase of the
   * same dimension, modifying self to be the composition of self
   * and other.  If the argument pre is true, then other is
   * precomposed with self; that is, the resulting transformation
   * consists of first applying other to the source, followed by
   * self.  If pre is false or omitted, then other is post-composed
   * with self; that is the resulting transformation consists of
   * first applying self to the source, followed by other.
   * This updates the Translation based on current center. */
  void Compose(const Self *other, bool pre = 0);

  /** Transform by an affine transformation
   *
   * This method applies the affine transform given by self to a
   * given point or vector, returning the transformed point or
   * vector.  The TransformPoint method transforms its argument as
   * an affine point, whereas the TransformVector method transforms
   * its argument as a vector. */

  OutputPointType       TransformPoint(const InputPointType & point) const;

  using Superclass::TransformVector;

  OutputVectorType      TransformVector(const InputVectorType & vector) const;

  OutputVnlVectorType   TransformVector(const InputVnlVectorType & vector) const;

  OutputVectorPixelType TransformVector(const InputVectorPixelType & vector) const;

  using Superclass::TransformCovariantVector;

  OutputCovariantVectorType TransformCovariantVector(const InputCovariantVectorType & vector) const;

  OutputVectorPixelType TransformCovariantVector(const InputVectorPixelType & vector) const;

  using Superclass::TransformDiffusionTensor3D;

  OutputDiffusionTensor3DType TransformDiffusionTensor3D(const InputDiffusionTensor3DType & tensor) const;

  OutputVectorPixelType TransformDiffusionTensor3D(const InputVectorPixelType & tensor ) const;

  using Superclass::TransformSymmetricSecondRankTensor;
  OutputSymmetricSecondRankTensorType TransformSymmetricSecondRankTensor( const InputSymmetricSecondRankTensorType & tensor ) const;

  OutputVectorPixelType TransformSymmetricSecondRankTensor( const InputVectorPixelType & tensor ) const;

  /** Compute the Jacobian of the transformation
   *
   * This method computes the Jacobian matrix of the transformation.
   * given point or vector, returning the transformed point or
   * vector. The rank of the Jacobian will also indicate if the transform
   * is invertible at this point.
   * Get local Jacobian for the given point
   * \c j will sized properly as needed.
   */
  virtual void ComputeJacobianWithRespectToParameters(const InputPointType  & x, JacobianType & j) const;

  /** Get the jacobian with respect to position. This simply returns
   * the current Matrix. jac will be resized as needed, but it's
   * more efficient if it's already properly sized. */
  virtual void ComputeJacobianWithRespectToPosition(const InputPointType  & x, JacobianType & jac) const;

  /** Get the jacobian with respect to position. This simply returns
   * the inverse of the current Matrix. jac will be resized as needed, but it's
   * more efficient if it's already properly sized. */
  virtual void ComputeInverseJacobianWithRespectToPosition(const InputPointType  & x, JacobianType & jac) const;

  /** Create inverse of an affine transformation
   *
   * This populates the parameters an affine transform such that
   * the transform is the inverse of self. If self is not invertible,
   * an exception is thrown.
   * Note that by default the inverese transform is centered at
   * the origin. If you need to compute the inverse centered at a point, p,
   *
   * \code
   * transform2->SetCenter( p );
   * transform1->GetInverse( transform2 );
   * \endcode
   *
   * transform2 will now contain the inverse of transform1 and will
   * with its center set to p. Flipping the two statements will produce an
   * incorrect transform.
   *
   */
  bool GetInverse(Self *inverse) const;

  /** Return an inverse of this transform. */
  virtual InverseTransformBasePointer GetInverseTransform() const;

  /** Indicates that this transform is linear. That is, given two
   * points P and Q, and scalar coefficients a and b, then
   *
   *           T( a*P + b*Q ) = a * T(P) + b * T(Q)
   */
  virtual bool IsLinear() const
  {
    return true;
  }

#if !defined(ITK_LEGACY_REMOVE)

public:
#else

protected:
#endif
  /** \deprecated Use GetInverse for public API instead.
   * Method will eventually be made a protected member function */
  const InverseMatrixType & GetInverseMatrix(void) const;

protected:
  /** Construct an MatrixOffsetTransformBase object
   *
   * This method constructs a new MatrixOffsetTransformBase object and
   * initializes the matrix and offset parts of the transformation
   * to values specified by the caller.  If the arguments are
   * omitted, then the MatrixOffsetTransformBase is initialized to an identity
   * transformation in the appropriate number of dimensions. */
  MatrixOffsetTransformBase(const MatrixType & matrix, const OutputVectorType & offset);
  MatrixOffsetTransformBase(unsigned int paramDims);
  MatrixOffsetTransformBase();

  /** Destroy an MatrixOffsetTransformBase object */
  virtual ~MatrixOffsetTransformBase();

  /** Print contents of an MatrixOffsetTransformBase */
  void PrintSelf(std::ostream & s, Indent indent) const;

  const InverseMatrixType & GetVarInverseMatrix(void) const
  {
    return m_InverseMatrix;
  }
  void SetVarInverseMatrix(const InverseMatrixType & matrix) const
  {
    m_InverseMatrix = matrix; m_InverseMatrixMTime.Modified();
  }
  bool InverseMatrixIsOld(void) const
  {
    if( m_MatrixMTime != m_InverseMatrixMTime )
      {
      return true;
      }
    else
      {
      return false;
      }
  }

  virtual void ComputeMatrixParameters(void);

  virtual void ComputeMatrix(void);

  void SetVarMatrix(const MatrixType & matrix)
  {
    m_Matrix = matrix; m_MatrixMTime.Modified();
  }

  virtual void ComputeTranslation(void);

  void SetVarTranslation(const OutputVectorType & translation)
  {
    m_Translation = translation;
  }

  virtual void ComputeOffset(void);

  void SetVarOffset(const OutputVectorType & offset)
  {
    m_Offset = offset;
  }

  void SetVarCenter(const InputPointType & center)
  {
    m_Center = center;
  }

private:

  MatrixOffsetTransformBase(const Self & other);
  const Self & operator=(const Self &);

  MatrixType                m_Matrix;           // Matrix of the transformation
  OutputVectorType          m_Offset;           // Offset of the transformation
  mutable InverseMatrixType m_InverseMatrix;    // Inverse of the matrix
  mutable bool              m_Singular;         // Is m_Inverse singular?

  InputPointType   m_Center;
  OutputVectorType m_Translation;

  /** To avoid recomputation of the inverse if not needed */
  TimeStamp         m_MatrixMTime;
  mutable TimeStamp m_InverseMatrixMTime;
}; // class MatrixOffsetTransformBase
}  // namespace itk

#ifndef ITK_MANUAL_INSTANTIATION
#include "itkMatrixOffsetTransformBase.hxx"
#endif

#endif /* __itkMatrixOffsetTransformBase_h */