/usr/include/ITK-4.5/itkMattesMutualInformationImageToImageMetric.h is in libinsighttoolkit4-dev 4.5.0-3.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 | /*=========================================================================
*
* Copyright Insight Software Consortium
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0.txt
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
*=========================================================================*/
#ifndef __itkMattesMutualInformationImageToImageMetric_h
#define __itkMattesMutualInformationImageToImageMetric_h
#include "itkImageToImageMetric.h"
#include "itkPoint.h"
#include "itkIndex.h"
#include "itkBSplineDerivativeKernelFunction.h"
#include "itkArray2D.h"
#include "itkSimpleFastMutexLock.h"
namespace itk
{
/** \class MattesMutualInformationImageToImageMetric
* \brief Computes the mutual information between two images to be
* registered using the method of Mattes et al.
*
* MattesMutualInformationImageToImageMetric computes the mutual
* information between a fixed and moving image to be registered.
*
* This class is templated over the FixedImage type and the MovingImage
* type.
*
* The fixed and moving images are set via methods SetFixedImage() and
* SetMovingImage(). This metric makes use of user specified Transform and
* Interpolator. The Transform is used to map points from the fixed image to
* the moving image domain. The Interpolator is used to evaluate the image
* intensity at user specified geometric points in the moving image.
* The Transform and Interpolator are set via methods SetTransform() and
* SetInterpolator().
*
* If a BSplineInterpolationFunction is used, this class obtain
* image derivatives from the BSpline interpolator. Otherwise,
* image derivatives are computed using central differencing.
*
* \warning This metric assumes that the moving image has already been
* connected to the interpolator outside of this class.
*
* The method GetValue() computes of the mutual information
* while method GetValueAndDerivative() computes
* both the mutual information and its derivatives with respect to the
* transform parameters.
*
* The calculations are based on the method of Mattes et al [1,2]
* where the probability density distribution are estimated using
* Parzen histograms. Since the fixed image PDF does not contribute
* to the derivatives, it does not need to be smooth. Hence,
* a zero order (box car) BSpline kernel is used
* for the fixed image intensity PDF. On the other hand, to ensure
* smoothness a third order BSpline kernel is used for the
* moving image intensity PDF.
*
* On Initialize(), the FixedImage is uniformly sampled within
* the FixedImageRegion. The number of samples used can be set
* via SetNumberOfSpatialSamples(). Typically, the number of
* spatial samples used should increase with the image size.
*
* The option UseAllPixelOn() disables the random sampling and uses
* all the pixels of the FixedImageRegion in order to estimate the
* joint intensity PDF.
*
* During each call of GetValue(), GetDerivatives(),
* GetValueAndDerivatives(), marginal and joint intensity PDF's
* values are estimated at discrete position or bins.
* The number of bins used can be set via SetNumberOfHistogramBins().
* To handle data with arbitray magnitude and dynamic range,
* the image intensity is scale such that any contribution to the
* histogram will fall into a valid bin.
*
* One the PDF's have been contructed, the mutual information
* is obtained by doubling summing over the discrete PDF values.
*
*
* Notes:
* 1. This class returns the negative mutual information value.
* 2. This class in not thread safe due the private data structures
* used to the store the sampled points and the marginal and joint pdfs.
*
* References:
* [1] "Nonrigid multimodality image registration"
* D. Mattes, D. R. Haynor, H. Vesselle, T. Lewellen and W. Eubank
* Medical Imaging 2001: Image Processing, 2001, pp. 1609-1620.
* [2] "PET-CT Image Registration in the Chest Using Free-form Deformations"
* D. Mattes, D. R. Haynor, H. Vesselle, T. Lewellen and W. Eubank
* IEEE Transactions in Medical Imaging. Vol.22, No.1,
January 2003. pp.120-128.
* [3] "Optimization of Mutual Information for MultiResolution Image
* Registration"
* P. Thevenaz and M. Unser
* IEEE Transactions in Image Processing, 9(12) December 2000.
*
* \ingroup RegistrationMetrics
* \ingroup ITKRegistrationCommon
*/
template <typename TFixedImage, typename TMovingImage>
class MattesMutualInformationImageToImageMetric:
public ImageToImageMetric<TFixedImage, TMovingImage>
{
public:
/** Standard class typedefs. */
typedef MattesMutualInformationImageToImageMetric Self;
typedef ImageToImageMetric<TFixedImage, TMovingImage> Superclass;
typedef SmartPointer<Self> Pointer;
typedef SmartPointer<const Self> ConstPointer;
/** Method for creation through the object factory. */
itkNewMacro(Self);
/** Run-time type information (and related methods). */
itkTypeMacro(MattesMutualInformationImageToImageMetric,
ImageToImageMetric);
/** Types inherited from Superclass. */
typedef typename Superclass::TransformType TransformType;
typedef typename Superclass::TransformPointer TransformPointer;
typedef typename Superclass::TransformJacobianType TransformJacobianType;
typedef typename Superclass::InterpolatorType InterpolatorType;
typedef typename Superclass::MeasureType MeasureType;
typedef typename Superclass::DerivativeType DerivativeType;
typedef typename Superclass::ParametersType ParametersType;
typedef typename Superclass::FixedImageType FixedImageType;
typedef typename Superclass::MovingImageType MovingImageType;
typedef typename Superclass::MovingImagePointType MovingImagePointType;
typedef typename Superclass::FixedImageConstPointer FixedImageConstPointer;
typedef typename Superclass::MovingImageConstPointer MovingImageConstPointer;
typedef typename Superclass::BSplineTransformWeightsType BSplineTransformWeightsType;
typedef typename Superclass::BSplineTransformIndexArrayType BSplineTransformIndexArrayType;
typedef typename Superclass::CoordinateRepresentationType CoordinateRepresentationType;
typedef typename Superclass::FixedImageSampleContainer FixedImageSampleContainer;
typedef typename Superclass::ImageDerivativesType ImageDerivativesType;
typedef typename Superclass::WeightsValueType WeightsValueType;
typedef typename Superclass::IndexValueType IndexValueType;
typedef typename FixedImageType::OffsetValueType OffsetValueType;
/** The moving image dimension. */
itkStaticConstMacro(MovingImageDimension, unsigned int,
MovingImageType::ImageDimension);
/**
* Initialize the Metric by
* (1) making sure that all the components are present and plugged
* together correctly,
* (2) uniformly select NumberOfSpatialSamples within
* the FixedImageRegion, and
* (3) allocate memory for pdf data structures. */
virtual void Initialize(void)
throw ( ExceptionObject );
/** Get the value. */
MeasureType GetValue(const ParametersType & parameters) const;
/** Get the derivatives of the match measure. */
void GetDerivative(const ParametersType & parameters, DerivativeType & Derivative) const;
/** Get the value and derivatives for single valued optimizers. */
void GetValueAndDerivative(const ParametersType & parameters, MeasureType & Value, DerivativeType & Derivative) const;
/** Number of bins to used in the histogram.
* According to Mattes et al the optimum value is 50.
* The minimum value is 5 due to the padding required by the Parzen
* windowing with a cubic-BSpline kernel. Note that even if the metric
* is used on binary images, the number of bins should at least be
* equal to five. */
itkSetClampMacro( NumberOfHistogramBins, SizeValueType,
5, NumericTraits<SizeValueType>::max() );
itkGetConstReferenceMacro(NumberOfHistogramBins, SizeValueType);
/** This variable selects the method to be used for computing the Metric
* derivatives with respect to the Transform parameters. Two modes of
* computation are available. The choice between one and the other is a
* trade-off between computation speed and memory allocations. The two modes
* are described in detail below:
*
* UseExplicitPDFDerivatives = True
* will compute the Metric derivative by first calculating the derivatives of
* each one of the Joint PDF bins with respect to each one of the Transform
* parameters and then accumulating these contributions in the final metric
* derivative array by using a bin-specific weight. The memory required for
* storing the intermediate derivatives is a 3D array of floating point values with size
* equals to the product of (number of histogram bins)^2 times number of
* transform parameters. This method is well suited for Transform with a small
* number of parameters.
*
* UseExplicitPDFDerivatives = False will compute the Metric derivative by
* first computing the weights for each one of the Joint PDF bins and caching
* them into an array. Then it will revisit each one of the PDF bins for
* computing its weighted contribution to the full derivative array. In this
* method an extra 2D array is used for storing the weights of each one of
* the PDF bins. This is an array of floating point values with size equals to (number of
* histogram bins)^2. This method is well suited for Transforms with a large
* number of parameters, such as, BSplineTransforms. */
itkSetMacro(UseExplicitPDFDerivatives, bool);
itkGetConstReferenceMacro(UseExplicitPDFDerivatives, bool);
itkBooleanMacro(UseExplicitPDFDerivatives);
/** The marginal PDFs are stored as std::vector. */
typedef double PDFValueType; //NOTE: floating point precision is not as stable. Double precision proves faster and more robust in real-world testing.
/** Typedef for the joint PDF and PDF derivatives are stored as ITK Images. */
typedef Image<PDFValueType, 2> JointPDFType;
typedef Image<PDFValueType, 3> JointPDFDerivativesType;
/**
* Get the internal JointPDF image that was used in
* creating the metric value.
*/
const typename JointPDFType::Pointer GetJointPDF () const
{
if( this->m_MMIMetricPerThreadVariables == NULL )
{
return JointPDFType::Pointer(NULL);
}
return this->m_MMIMetricPerThreadVariables[0].JointPDF;
}
/**
* Get the internal JointPDFDeriviative image that was used in
* creating the metric derivative value.
* This is only created when UseExplicitPDFDerivatives is ON, and
* derivatives are requested.
*/
const typename JointPDFDerivativesType::Pointer GetJointPDFDerivatives () const
{
if( this->m_MMIMetricPerThreadVariables == NULL )
{
return JointPDFDerivativesType::Pointer(NULL);
}
return this->m_MMIMetricPerThreadVariables[0].JointPDFDerivatives;
}
protected:
MattesMutualInformationImageToImageMetric();
virtual ~MattesMutualInformationImageToImageMetric();
void PrintSelf(std::ostream & os, Indent indent) const;
private:
// purposely not implemented
MattesMutualInformationImageToImageMetric(const Self &);
// purposely not implemented
void operator=(const Self &);
typedef JointPDFType::IndexType JointPDFIndexType;
typedef JointPDFType::PixelType JointPDFValueType;
typedef JointPDFType::RegionType JointPDFRegionType;
typedef JointPDFType::SizeType JointPDFSizeType;
typedef JointPDFDerivativesType::IndexType JointPDFDerivativesIndexType;
typedef JointPDFDerivativesType::PixelType JointPDFDerivativesValueType;
typedef JointPDFDerivativesType::RegionType JointPDFDerivativesRegionType;
typedef JointPDFDerivativesType::SizeType JointPDFDerivativesSizeType;
/** Typedefs for BSpline kernel and derivative functions. */
typedef BSplineKernelFunction<3,PDFValueType> CubicBSplineFunctionType;
typedef BSplineDerivativeKernelFunction<3,PDFValueType> CubicBSplineDerivativeFunctionType;
/** Precompute fixed image parzen window indices. */
void ComputeFixedImageParzenWindowIndices( FixedImageSampleContainer & samples);
/** Compute PDF derivative contribution for each parameter. */
void ComputePDFDerivatives(ThreadIdType threadID, unsigned int sampleNumber, int movingImageParzenWindowIndex,
const ImageDerivativesType
& movingImageGradientValue,
PDFValueType cubicBSplineDerivativeValue) const;
virtual void GetValueThreadPreProcess(ThreadIdType threadID, bool withinSampleThread) const;
virtual void GetValueThreadPostProcess(ThreadIdType threadID, bool withinSampleThread) const;
//NOTE: The signature in base class requires that movingImageValue is of type double
virtual bool GetValueThreadProcessSample(ThreadIdType threadID, SizeValueType fixedImageSample,
const MovingImagePointType & mappedPoint,
double movingImageValue) const;
virtual void GetValueAndDerivativeThreadPreProcess( ThreadIdType threadID, bool withinSampleThread) const;
virtual void GetValueAndDerivativeThreadPostProcess( ThreadIdType threadID, bool withinSampleThread) const;
//NOTE: The signature in base class requires that movingImageValue is of type double
virtual bool GetValueAndDerivativeThreadProcessSample(ThreadIdType threadID, SizeValueType fixedImageSample,
const MovingImagePointType & mappedPoint,
double movingImageValue, const ImageDerivativesType &
movingImageGradientValue) const;
/** Variables to define the marginal and joint histograms. */
SizeValueType m_NumberOfHistogramBins;
PDFValueType m_MovingImageNormalizedMin;
PDFValueType m_FixedImageNormalizedMin;
PDFValueType m_FixedImageTrueMin;
PDFValueType m_FixedImageTrueMax;
PDFValueType m_MovingImageTrueMin;
PDFValueType m_MovingImageTrueMax;
PDFValueType m_FixedImageBinSize;
PDFValueType m_MovingImageBinSize;
/** Cubic BSpline kernel for computing Parzen histograms. */
typename CubicBSplineFunctionType::Pointer m_CubicBSplineKernel;
typename CubicBSplineDerivativeFunctionType::Pointer m_CubicBSplineDerivativeKernel;
/** Helper array for storing the values of the JointPDF ratios. */
typedef PDFValueType PRatioType;
typedef Array2D<PRatioType> PRatioArrayType;
mutable PRatioArrayType m_PRatioArray;
/** The moving image marginal PDF. */
typedef std::vector< PDFValueType > MarginalPDFType;
mutable MarginalPDFType m_MovingImageMarginalPDF;
struct MMIMetricPerThreadStruct
{
int JointPDFStartBin;
int JointPDFEndBin;
PDFValueType JointPDFSum;
/** Helper variable for accumulating the derivative of the metric. */
DerivativeType MetricDerivative;
/** The joint PDF and PDF derivatives. */
typename JointPDFType::Pointer JointPDF;
typename JointPDFDerivativesType::Pointer JointPDFDerivatives;
typename TransformType::JacobianType Jacobian;
MarginalPDFType FixedImageMarginalPDF;
};
#if !defined(__GCCXML__)
itkPadStruct( ITK_CACHE_LINE_ALIGNMENT, MMIMetricPerThreadStruct,
PaddedMMIMetricPerThreadStruct);
itkAlignedTypedef( ITK_CACHE_LINE_ALIGNMENT, PaddedMMIMetricPerThreadStruct,
AlignedMMIMetricPerThreadStruct );
// Due to a bug in older version of Visual Studio where std::vector resize
// uses a value instead of a const reference, this must be a pointer.
// See
// http://thetweaker.wordpress.com/2010/05/05/stdvector-of-aligned-elements/
// http://connect.microsoft.com/VisualStudio/feedback/details/692988
mutable AlignedMMIMetricPerThreadStruct * m_MMIMetricPerThreadVariables;
#endif
bool m_UseExplicitPDFDerivatives;
mutable bool m_ImplicitDerivativesSecondPass;
};
} // end namespace itk
#ifndef ITK_MANUAL_INSTANTIATION
#include "itkMattesMutualInformationImageToImageMetric.hxx"
#endif
#endif
|