/usr/include/ITK-4.5/itkMaximumRatioDecisionRule.h is in libinsighttoolkit4-dev 4.5.0-3.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 | /*=========================================================================
*
* Copyright Insight Software Consortium
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0.txt
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
*=========================================================================*/
#ifndef __itkMaximumRatioDecisionRule_h
#define __itkMaximumRatioDecisionRule_h
#include <vector>
#include "vnl/vnl_matrix.h"
#include "itkNumericTraits.h"
#include "itkDecisionRule.h"
namespace itk
{
namespace Statistics
{
/** \class MaximumRatioDecisionRule
* \brief A decision rule that operates as a frequentist's
* approximation to Bayes rule.
*
* MaximumRatioDecisionRule returns the class label using a Bayesian
* style decision rule. The discriminant scores are evaluated in the
* context of class priors. If the discriminant scores are actual
* conditional probabilites (likelihoods) and the class priors are
* actual a priori class probabilities, then this decision rule operates
* as Bayes rule, returning the class \f$i\f$ if
* \f$p(x|i) p(i) > p(x|j) p(j)\f$ for all class \f$j\f$. The
* discriminant scores and priors are not required to be true
* probabilities.
*
* This class is named the MaximumRatioDecisionRule as it can be
* implemented as returning the class \f$i\f$ if
* \f$\frac{p(x|i)}{p(x|j)} > \frac{p(j)}{p(i)}\f$ for all class
* \f$j\f$.
*
* A priori values need to be set before calling the Evaluate
* method. If they are not set, a uniform prior is assumed.
*
* \sa MaximumDecisionRule, MinimumDecisionRule
* \ingroup ITKStatistics
*/
class MaximumRatioDecisionRule : public DecisionRule
{
public:
/** Standard class typedefs */
typedef MaximumRatioDecisionRule Self;
typedef DecisionRule Superclass;
typedef SmartPointer< Self > Pointer;
/** Run-time type information (and related methods) */
itkTypeMacro(MaximumRatioDecisionRule, DecisionRule);
/** Standard New() method support */
itkNewMacro(Self);
/** Types for discriminant values and vectors. */
typedef Superclass::MembershipValueType MembershipValueType;
typedef Superclass::MembershipVectorType MembershipVectorType;
/** Types for class identifiers. */
typedef Superclass::ClassIdentifierType ClassIdentifierType;
/** Types for priors and values */
typedef MembershipValueType PriorProbabilityValueType;
typedef std::vector< PriorProbabilityValueType > PriorProbabilityVectorType;
typedef PriorProbabilityVectorType::size_type PriorProbabilityVectorSizeType;
/**
* Evaluate the decision rule \f$p(x|i) p(i) > p(x|j) p(j)\f$. Prior
* probabilities need to be set before calling Evaluate() using the
* SetPriorProbabilities() method (otherwise a uniform prior is
* assumed). Parameter to Evaluate() is the discriminant score in
* the form of a likelihood \f$p(x|i)\f$.
*/
virtual ClassIdentifierType Evaluate(const MembershipVectorType & discriminantScores) const;
/** Set the prior probabilities used in evaluating
* \f$p(x|i) p(i) > p(x|j) p(j)\f$. The likelihoods are set using
* the Evaluate() method. SetPriorProbabilities needs to be called before
* Evaluate(). If not set, assumes a uniform prior. */
void SetPriorProbabilities(const PriorProbabilityVectorType& p);
/** Get the prior probabilities. */
itkGetConstReferenceMacro(PriorProbabilities, PriorProbabilityVectorType);
protected:
MaximumRatioDecisionRule();
virtual ~MaximumRatioDecisionRule() {}
void PrintSelf(std::ostream & os, Indent indent) const;
private:
MaximumRatioDecisionRule(const Self &); //purposely not implemented
void operator=(const Self &); //purposely not implemented
PriorProbabilityVectorType m_PriorProbabilities;
}; // end of class
} // end of Statistics namespace
} // end of ITK namespace
#endif
|