This file is indexed.

/usr/include/ITK-4.5/itkMaximumRatioDecisionRule.h is in libinsighttoolkit4-dev 4.5.0-3.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
/*=========================================================================
 *
 *  Copyright Insight Software Consortium
 *
 *  Licensed under the Apache License, Version 2.0 (the "License");
 *  you may not use this file except in compliance with the License.
 *  You may obtain a copy of the License at
 *
 *         http://www.apache.org/licenses/LICENSE-2.0.txt
 *
 *  Unless required by applicable law or agreed to in writing, software
 *  distributed under the License is distributed on an "AS IS" BASIS,
 *  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 *  See the License for the specific language governing permissions and
 *  limitations under the License.
 *
 *=========================================================================*/
#ifndef __itkMaximumRatioDecisionRule_h
#define __itkMaximumRatioDecisionRule_h

#include <vector>
#include "vnl/vnl_matrix.h"

#include "itkNumericTraits.h"
#include "itkDecisionRule.h"

namespace itk
{
namespace Statistics
{
/** \class MaximumRatioDecisionRule
 *  \brief A decision rule that operates as a frequentist's
 *  approximation to Bayes rule.
 *
 * MaximumRatioDecisionRule returns the class label using a Bayesian
 * style decision rule. The discriminant scores are evaluated in the
 * context of class priors. If the discriminant scores are actual
 * conditional probabilites (likelihoods) and the class priors are
 * actual a priori class probabilities, then this decision rule operates
 * as Bayes rule, returning the class \f$i\f$ if
 * \f$p(x|i) p(i) > p(x|j) p(j)\f$ for all class \f$j\f$. The
 * discriminant scores and priors are not required to be true
 * probabilities.
 *
 * This class is named the MaximumRatioDecisionRule as it can be
 * implemented as returning the class \f$i\f$ if
 * \f$\frac{p(x|i)}{p(x|j)} > \frac{p(j)}{p(i)}\f$ for all class
 * \f$j\f$.
 *
 * A priori values need to be set before calling the Evaluate
 * method. If they are not set, a uniform prior is assumed.
 *
 * \sa MaximumDecisionRule, MinimumDecisionRule
 * \ingroup ITKStatistics
 */

class MaximumRatioDecisionRule : public DecisionRule
{
public:
  /** Standard class typedefs */
  typedef MaximumRatioDecisionRule  Self;
  typedef DecisionRule              Superclass;
  typedef SmartPointer< Self >      Pointer;

  /** Run-time type information (and related methods) */
  itkTypeMacro(MaximumRatioDecisionRule, DecisionRule);

  /** Standard New() method support */
  itkNewMacro(Self);

  /** Types for discriminant values and vectors. */
  typedef Superclass::MembershipValueType  MembershipValueType;
  typedef Superclass::MembershipVectorType MembershipVectorType;

  /** Types for class identifiers. */
  typedef Superclass::ClassIdentifierType ClassIdentifierType;

  /** Types for priors and values */
  typedef MembershipValueType                      PriorProbabilityValueType;
  typedef std::vector< PriorProbabilityValueType > PriorProbabilityVectorType;
  typedef PriorProbabilityVectorType::size_type    PriorProbabilityVectorSizeType;

  /**
   * Evaluate the decision rule \f$p(x|i) p(i) > p(x|j) p(j)\f$. Prior
   * probabilities need to be set before calling Evaluate() using the
   * SetPriorProbabilities() method (otherwise a uniform prior is
   * assumed). Parameter to Evaluate() is the discriminant score in
   * the form of a likelihood \f$p(x|i)\f$.
   */
  virtual ClassIdentifierType Evaluate(const MembershipVectorType & discriminantScores) const;

  /** Set the prior probabilities used in evaluating
   * \f$p(x|i) p(i) > p(x|j) p(j)\f$. The likelihoods are set using
   * the Evaluate() method. SetPriorProbabilities needs to be called before
   * Evaluate(). If not set, assumes a uniform prior.  */
  void SetPriorProbabilities(const PriorProbabilityVectorType& p);

  /** Get the prior probabilities. */
  itkGetConstReferenceMacro(PriorProbabilities, PriorProbabilityVectorType);

protected:
  MaximumRatioDecisionRule();
  virtual ~MaximumRatioDecisionRule() {}
  void PrintSelf(std::ostream & os, Indent indent) const;

private:
  MaximumRatioDecisionRule(const Self &); //purposely not implemented
  void operator=(const Self &);            //purposely not implemented

  PriorProbabilityVectorType m_PriorProbabilities;

};  // end of class
} // end of Statistics namespace
} // end of ITK namespace
#endif