This file is indexed.

/usr/include/ITK-4.5/itkMeanReciprocalSquareDifferencePointSetToImageMetric.hxx is in libinsighttoolkit4-dev 4.5.0-3.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
/*=========================================================================
 *
 *  Copyright Insight Software Consortium
 *
 *  Licensed under the Apache License, Version 2.0 (the "License");
 *  you may not use this file except in compliance with the License.
 *  You may obtain a copy of the License at
 *
 *         http://www.apache.org/licenses/LICENSE-2.0.txt
 *
 *  Unless required by applicable law or agreed to in writing, software
 *  distributed under the License is distributed on an "AS IS" BASIS,
 *  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 *  See the License for the specific language governing permissions and
 *  limitations under the License.
 *
 *=========================================================================*/
#ifndef __itkMeanReciprocalSquareDifferencePointSetToImageMetric_hxx
#define __itkMeanReciprocalSquareDifferencePointSetToImageMetric_hxx

#include "itkMeanReciprocalSquareDifferencePointSetToImageMetric.h"
#include "itkImageRegionConstIteratorWithIndex.h"

namespace itk
{
/*
* Constructor
*/
template <typename TFixedPointSet, typename TMovingImage>
MeanReciprocalSquareDifferencePointSetToImageMetric<TFixedPointSet, TMovingImage>
::MeanReciprocalSquareDifferencePointSetToImageMetric()
{
  m_Lambda = 1.0;
}

/**
 * Get the match Measure
 */
template <typename TFixedPointSet, typename TMovingImage>
typename MeanReciprocalSquareDifferencePointSetToImageMetric<TFixedPointSet, TMovingImage>::MeasureType
MeanReciprocalSquareDifferencePointSetToImageMetric<TFixedPointSet, TMovingImage>
::GetValue(const TransformParametersType & parameters) const
{
  FixedPointSetConstPointer fixedPointSet = this->GetFixedPointSet();

  if( !fixedPointSet )
    {
    itkExceptionMacro(<< "Fixed point set has not been assigned");
    }

  PointIterator pointItr = fixedPointSet->GetPoints()->Begin();
  PointIterator pointEnd = fixedPointSet->GetPoints()->End();

  PointDataIterator pointDataItr = fixedPointSet->GetPointData()->Begin();
  PointDataIterator pointDataEnd = fixedPointSet->GetPointData()->End();

  MeasureType measure = NumericTraits<MeasureType>::Zero;

  this->m_NumberOfPixelsCounted = 0;
  double lambdaSquared = vcl_pow(this->m_Lambda, 2);

  this->SetTransformParameters(parameters);

  typedef  typename NumericTraits<MeasureType>::AccumulateType AccumulateType;

  while( pointItr != pointEnd && pointDataItr != pointDataEnd )
    {
    InputPointType inputPoint;
    inputPoint.CastFrom( pointItr.Value() );
    OutputPointType transformedPoint =
      this->m_Transform->TransformPoint(inputPoint);

    if( this->m_Interpolator->IsInsideBuffer(transformedPoint) )
      {
      const RealType movingValue  = this->m_Interpolator->Evaluate(transformedPoint);
      const RealType fixedValue   = pointDataItr.Value();
      const RealType diff = movingValue - fixedValue;
      const double   diffSquared = diff * diff;
      measure += 1.0 / ( lambdaSquared + diffSquared );
      this->m_NumberOfPixelsCounted++;
      }

    ++pointItr;
    ++pointDataItr;
    }

  if( !this->m_NumberOfPixelsCounted )
    {
    itkExceptionMacro(<< "All the points mapped to outside of the moving image");
    }
  else
    {
    measure *= ( lambdaSquared / this->m_NumberOfPixelsCounted );
    }

  return measure;
}

/*
 * Get the Derivative Measure
 */
template <typename TFixedPointSet, typename TMovingImage>
void
MeanReciprocalSquareDifferencePointSetToImageMetric<TFixedPointSet, TMovingImage>
::GetDerivative(const TransformParametersType & parameters,
                DerivativeType & derivative) const
{
  if( !this->GetGradientImage() )
    {
    itkExceptionMacro(<< "The gradient image is null, maybe you forgot to call Initialize()");
    }

  FixedPointSetConstPointer fixedPointSet = this->GetFixedPointSet();

  if( !fixedPointSet )
    {
    itkExceptionMacro(<< "Fixed image has not been assigned");
    }

  this->m_NumberOfPixelsCounted = 0;

  double lambdaSquared = vcl_pow(this->m_Lambda, 2);

  this->SetTransformParameters(parameters);

  typedef  typename NumericTraits<MeasureType>::AccumulateType AccumulateType;

  const unsigned int ParametersDimension = this->GetNumberOfParameters();
  derivative = DerivativeType(ParametersDimension);
  derivative.Fill(NumericTraits<typename DerivativeType::ValueType>::Zero);

  PointIterator pointItr = fixedPointSet->GetPoints()->Begin();
  PointIterator pointEnd = fixedPointSet->GetPoints()->End();

  PointDataIterator pointDataItr = fixedPointSet->GetPointData()->Begin();
  PointDataIterator pointDataEnd = fixedPointSet->GetPointData()->End();

  TransformJacobianType jacobian;

  while( pointItr != pointEnd && pointDataItr != pointDataEnd )
    {
    InputPointType inputPoint;
    inputPoint.CastFrom( pointItr.Value() );
    OutputPointType transformedPoint =
      this->m_Transform->TransformPoint(inputPoint);

    if( this->m_Interpolator->IsInsideBuffer(transformedPoint) )
      {
      const RealType movingValue  = this->m_Interpolator->Evaluate(transformedPoint);
      const RealType fixedValue   = pointDataItr.Value();

      this->m_NumberOfPixelsCounted++;
      const RealType diff = movingValue - fixedValue;
      const RealType diffSquared = diff * diff;

      // Now compute the derivatives
      this->m_Transform->ComputeJacobianWithRespectToParameters(inputPoint, jacobian);

      // Get the gradient by NearestNeighboorInterpolation:
      // which is equivalent to round up the point components.
      typedef typename OutputPointType::CoordRepType CoordRepType;
      typedef ContinuousIndex<CoordRepType, MovingImageType::ImageDimension>
      MovingImageContinuousIndexType;

      MovingImageContinuousIndexType tempIndex;
      this->m_MovingImage->TransformPhysicalPointToContinuousIndex(transformedPoint, tempIndex);

      typename MovingImageType::IndexType mappedIndex;
      mappedIndex.CopyWithRound(tempIndex);

      const GradientPixelType gradient =
        this->GetGradientImage()->GetPixel(mappedIndex);
      for( unsigned int par = 0; par < ParametersDimension; par++ )
        {
        RealType sum = NumericTraits<RealType>::Zero;
        for( unsigned int dim = 0; dim < Self::FixedPointSetDimension; dim++ )
          {
          // Will it be computationally more efficient to instead calculate the
          // derivative using finite differences ?
          sum -= jacobian(dim, par)
            * gradient[dim] / ( vcl_pow(lambdaSquared + diffSquared, 2) );
          }
        derivative[par] += diff * sum;
        }
      }

    ++pointItr;
    ++pointDataItr;
    }

  if( !this->m_NumberOfPixelsCounted )
    {
    itkExceptionMacro(<< "All the points mapped to outside of the moving image");
    }
  else
    {
    for( unsigned int i = 0; i < ParametersDimension; i++ )
      {
      derivative[i] *= 2.0 * lambdaSquared / this->m_NumberOfPixelsCounted;
      }
    }
}

/*
 * Get both the match Measure and theDerivative Measure
 */
template <typename TFixedPointSet, typename TMovingImage>
void
MeanReciprocalSquareDifferencePointSetToImageMetric<TFixedPointSet, TMovingImage>
::GetValueAndDerivative(const TransformParametersType & parameters,
                        MeasureType & value, DerivativeType  & derivative) const
{
  if( !this->GetGradientImage() )
    {
    itkExceptionMacro(<< "The gradient image is null, maybe you forgot to call Initialize()");
    }

  FixedPointSetConstPointer fixedPointSet = this->GetFixedPointSet();

  if( !fixedPointSet )
    {
    itkExceptionMacro(<< "Fixed image has not been assigned");
    }

  this->m_NumberOfPixelsCounted = 0;
  MeasureType measure = NumericTraits<MeasureType>::Zero;

  this->SetTransformParameters(parameters);
  double lambdaSquared = vcl_pow(this->m_Lambda, 2);

  typedef  typename NumericTraits<MeasureType>::AccumulateType AccumulateType;

  const unsigned int ParametersDimension = this->GetNumberOfParameters();
  derivative = DerivativeType(ParametersDimension);
  derivative.Fill(NumericTraits<typename DerivativeType::ValueType>::Zero);

  PointIterator pointItr = fixedPointSet->GetPoints()->Begin();
  PointIterator pointEnd = fixedPointSet->GetPoints()->End();

  PointDataIterator pointDataItr = fixedPointSet->GetPointData()->Begin();
  PointDataIterator pointDataEnd = fixedPointSet->GetPointData()->End();

  while( pointItr != pointEnd && pointDataItr != pointDataEnd )
    {
    InputPointType inputPoint;
    inputPoint.CastFrom( pointItr.Value() );
    OutputPointType transformedPoint =
      this->m_Transform->TransformPoint(inputPoint);

    if( this->m_Interpolator->IsInsideBuffer(transformedPoint) )
      {
      const RealType movingValue  = this->m_Interpolator->Evaluate(transformedPoint);
      const RealType fixedValue   = pointDataItr.Value();

      this->m_NumberOfPixelsCounted++;

      // Now compute the derivatives
      TransformJacobianType jacobian;
      this->m_Transform->ComputeJacobianWithRespectToParameters(inputPoint, jacobian);

      const RealType diff = movingValue - fixedValue;
      const RealType diffSquared = diff * diff;
      measure += 1.0 / ( lambdaSquared + diffSquared );

      // Get the gradient by NearestNeighboorInterpolation:
      // which is equivalent to round up the point components.
      typedef typename OutputPointType::CoordRepType CoordRepType;
      typedef ContinuousIndex<CoordRepType, MovingImageType::ImageDimension>
      MovingImageContinuousIndexType;

      MovingImageContinuousIndexType tempIndex;
      this->m_MovingImage->TransformPhysicalPointToContinuousIndex(transformedPoint, tempIndex);

      typename MovingImageType::IndexType mappedIndex;
      mappedIndex.CopyWithRound(tempIndex);

      const GradientPixelType gradient =
        this->GetGradientImage()->GetPixel(mappedIndex);
      for( unsigned int par = 0; par < ParametersDimension; par++ )
        {
        RealType sum = NumericTraits<RealType>::Zero;
        for( unsigned int dim = 0; dim < Self::FixedPointSetDimension; dim++ )
          {
          sum -= jacobian(dim, par) * gradient[dim]
            * vcl_pow(lambdaSquared + diffSquared, 2);
          }
        derivative[par] += diff * sum;
        }
      }

    ++pointItr;
    ++pointDataItr;
    }

  if( !this->m_NumberOfPixelsCounted )
    {
    itkExceptionMacro(<< "All the points mapped to outside of the moving image");
    }
  else
    {
    for( unsigned int i = 0; i < ParametersDimension; i++ )
      {
      derivative[i] *= 2.0 * lambdaSquared / this->m_NumberOfPixelsCounted;
      }
    measure *= lambdaSquared / this->m_NumberOfPixelsCounted;
    }

  value = measure;
}

/**
 * PrintSelf
 */
template <typename TFixedPointSet, typename TMovingImage>
void
MeanReciprocalSquareDifferencePointSetToImageMetric<TFixedPointSet, TMovingImage>
::PrintSelf(std::ostream & os, Indent indent) const
{
  Superclass::PrintSelf(os, indent);
  os << "Lambda factor = " << m_Lambda << std::endl;
}

} // end namespace itk

#endif