/usr/include/ITK-4.5/itkMersenneTwisterRandomVariateGenerator.h is in libinsighttoolkit4-dev 4.5.0-3.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 | /*=========================================================================
*
* Copyright Insight Software Consortium
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0.txt
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
*=========================================================================*/
#ifndef __itkMersenneTwisterRandomVariateGenerator_h
#define __itkMersenneTwisterRandomVariateGenerator_h
#include "itkMacro.h"
#include "itkObjectFactory.h"
#include "itkRandomVariateGeneratorBase.h"
#include "itkIntTypes.h"
#include "vcl_ctime.h"
#include "vnl/vnl_math.h"
#include <climits>
namespace itk
{
namespace Statistics
{
/** \class MersenneTwisterRandomVariateGenerator
* \brief MersenneTwisterRandom random variate generator
*
* \warning This class is NOT reentrant.
*
* This notice was included with the original implementation.
* The only changes made were to obfuscate the author's email addresses.
*
* MersenneTwister.h
* Mersenne Twister random number generator -- a C++ class MTRand
* Based on code by Makoto Matsumoto, Takuji Nishimura, and Shawn Cokus
* Richard J. Wagner v1.0 15 May 2003 rjwagner at writeme dot com
*
* The Mersenne Twister is an algorithm for generating random numbers. It
* was designed with consideration of the flaws in various other generators.
* The period, 2^19937-1, and the order of equidistribution, 623 dimensions,
* are far greater. The generator is also fast; it avoids multiplication and
* division, and it benefits from caches and pipelines. For more information
* see the inventors' web page at http:*www.math.keio.ac.jp/~matumoto/emt.html
*
* Reference
* M. Matsumoto and T. Nishimura, "Mersenne Twister: A 623-Dimensionally
* Equidistributed Uniform Pseudo-Random Number Generator", ACM Transactions on
* Modeling and Computer Simulation, Vol. 8, No. 1, January 1998, pp 3-30.
*
* Copyright (C) 1997 - 2002, Makoto Matsumoto and Takuji Nishimura,
* Copyright (C) 2000 - 2003, Richard J. Wagner
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* 3. The names of its contributors may not be used to endorse or promote
* products derived from this software without specific prior written
* permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
* CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
* EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
* PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
* LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
* NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
* SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
* The original code included the following notice:
*
* When you use this, send an email to: matumoto at math dot keio dot ac dot jp
* with an appropriate reference to your work.
*
* It would be nice to CC:
* rjwagner at writeme dot com and Cokus at math dot washington dot edu
* when you write.
*
* \ingroup Common
* \ingroup ITKCommon
*
* \wiki
* \wikiexample{Utilities/MersenneTwisterRandomVariateGenerator,Random number generator}
* \endwiki
*/
class ITKCommon_EXPORT MersenneTwisterRandomVariateGenerator:
public RandomVariateGeneratorBase
{
public:
/** Standard class typedefs. */
typedef MersenneTwisterRandomVariateGenerator Self;
typedef RandomVariateGeneratorBase Superclass;
typedef SmartPointer< Self > Pointer;
typedef SmartPointer< const Self > ConstPointer;
typedef uint32_t IntegerType;
/** Run-time type information (and related methods). */
itkTypeMacro(MersenneTwisterRandomVariateGenerator,
RandomVariateGeneratorBase);
/** Method for creation through the object factory.
This method allocates a new instance of a Mersenne Twister,
and initializes it with the seed from the global instance. */
static Pointer New();
/** returns the global Merseene Twister instance
This method returns a Singleton of the Mersenne Twister.
The seed is initialized from the wall clock, but can be
set using SetSeed().
*/
static Pointer GetInstance();
/** Length of state vector */
itkStaticConstMacro(StateVectorLength, IntegerType, 624);
/** initialize with a simple IntegerType */
void Initialize(const IntegerType oneSeed);
/* Initialize with vcl_clock time */
void Initialize();
/** Get a random variate in the range [0, 1] */
double GetVariateWithClosedRange();
/** Get a random variate in the range [0, n] */
double GetVariateWithClosedRange(const double & n);
/** Get a range variate in the range [0, 1) */
double GetVariateWithOpenUpperRange();
/** Get a range variate in the range [0, n) */
double GetVariateWithOpenUpperRange(const double & n);
/** Get a range variate in the range (0, 1) */
double GetVariateWithOpenRange();
/** Get a range variate in the range (0, n) */
double GetVariateWithOpenRange(const double & n);
/** Get an integer variate in [0, 2^32-1] */
IntegerType GetIntegerVariate();
/** Get an integer variate in [0, n] for n < 2^32 */
IntegerType GetIntegerVariate(const IntegerType & n);
/** Access to 53-bit random numbers (capacity of IEEE double precision)
* in the range [0,1) */
double Get53BitVariate();
/* Access to a normal random number distribution
* TODO: Compare with vnl_sample_normal */
double GetNormalVariate(const double & mean = 0.0,
const double & variance = 1.0);
/* Access to a uniform random number distribution in the range [a, b)
* TODO: Compare with vnl_sample_uniform */
double GetUniformVariate(const double & a, const double & b);
/** get a variate in the range [0, 1]
* Do NOT use for CRYPTOGRAPHY without securely hashing several returned
* values together, otherwise the generator state can be learned after
* reading 624 consecutive values.
*/
virtual double GetVariate();
/** Same as GetVariate() */
double operator()();
// Re-seeding functions with same behavior as initializers
inline void SetSeed(const IntegerType oneSeed);
// inline void SetSeed(IntegerType *bigSeed, const IntegerType seedLength = StateVectorLength);
inline void SetSeed();
// Return the current seed
IntegerType GetSeed() { return this->m_Seed; };
/*
// Saving and loading generator state
void save( IntegerType* saveArray ) const; // to array of size SAVE
void load( IntegerType *const loadArray ); // from such array
*/
protected:
inline MersenneTwisterRandomVariateGenerator();
virtual ~MersenneTwisterRandomVariateGenerator() {}
virtual void PrintSelf(std::ostream & os, Indent indent) const
{
Superclass::PrintSelf(os, indent);
// Print state vector contents
os << indent << "State vector: " << state << std::endl;
os << indent;
register const IntegerType *s = state;
register int i = StateVectorLength;
for (; i--; os << *s++ << "\t" ) {}
os << std::endl;
//Print next value to be gotten from state
os << indent << "Next value to be gotten from state: " << pNext << std::endl;
//Number of values left before reload
os << indent << "Values left before next reload: " << left << std::endl;
}
// period parameter
itkStaticConstMacro (M, unsigned int, 397);
IntegerType state[StateVectorLength]; // internal state
IntegerType *pNext; // next value to get from state
int left; // number of values left before reload
// needed
IntegerType m_Seed; // Seed value
/* Reload array with N new values */
void reload();
IntegerType hiBit(const IntegerType & u) const { return u & 0x80000000; }
IntegerType loBit(const IntegerType & u) const { return u & 0x00000001; }
IntegerType loBits(const IntegerType & u) const { return u & 0x7fffffff; }
IntegerType mixBits(const IntegerType & u, const IntegerType & v) const
{
return hiBit(u) | loBits(v);
}
IntegerType twist(const IntegerType & m, const IntegerType & s0, const IntegerType & s1) const
{
return m ^ ( mixBits(s0, s1) >> 1 ) ^ ( -static_cast<int32_t>(loBit(s1)) & 0x9908b0df );
}
static IntegerType hash(vcl_time_t t, vcl_clock_t c);
static Pointer m_Instance;
}; // end of class
// Declare inlined functions.... (must be declared in the header)
inline MersenneTwisterRandomVariateGenerator::IntegerType
MersenneTwisterRandomVariateGenerator::hash(vcl_time_t t, vcl_clock_t c)
{
// Get a IntegerType from t and c
// Better than IntegerType(x) in case x is floating point in [0,1]
// Based on code by Lawrence Kirby: fred at genesis dot demon dot co dot uk
static IntegerType differ = 0; // guarantee time-based seeds will change
IntegerType h1 = 0;
unsigned char *p = (unsigned char *)&t;
const unsigned int sizeOfT = static_cast< unsigned int >( sizeof(t) );
for ( unsigned int i = 0; i < sizeOfT; ++i )
{
h1 *= UCHAR_MAX + 2U;
h1 += p[i];
}
IntegerType h2 = 0;
p = (unsigned char *)&c;
const unsigned int sizeOfC = static_cast< unsigned int >( sizeof(c) );
for ( unsigned int j = 0; j < sizeOfC; ++j )
{
h2 *= UCHAR_MAX + 2U;
h2 += p[j];
}
return ( h1 + differ++ ) ^ h2;
}
inline void
MersenneTwisterRandomVariateGenerator::Initialize(const IntegerType seed)
{
this->m_Seed = seed;
// Initialize generator state with seed
// See Knuth TAOCP Vol 2, 3rd Ed, p.106 for multiplier.
// In previous versions, most significant bits (MSBs) of the seed affect
// only MSBs of the state array. Modified 9 Jan 2002 by Makoto Matsumoto.
register IntegerType *s = state;
register IntegerType *r = state;
register IntegerType i = 1;
*s++ = seed & 0xffffffffUL;
for ( i = 1; i < MersenneTwisterRandomVariateGenerator::StateVectorLength; ++i )
{
*s++ = ( 1812433253UL * ( *r ^ ( *r >> 30 ) ) + i ) & 0xffffffffUL;
r++;
}
}
inline void
MersenneTwisterRandomVariateGenerator::reload()
{
// Generate N new values in state
// Made clearer and faster by Matthew Bellew
// matthew dot bellew at home dot com
// get rid of VS warning
register int index = static_cast< int >(
M - MersenneTwisterRandomVariateGenerator::StateVectorLength );
register IntegerType *p = state;
register int i;
for ( i = MersenneTwisterRandomVariateGenerator::StateVectorLength - M; i--; ++p )
{
*p = twist(p[M], p[0], p[1]);
}
for ( i = M; --i; ++p )
{
*p = twist(p[index], p[0], p[1]);
}
*p = twist(p[index], p[0], state[0]);
left = MersenneTwisterRandomVariateGenerator::StateVectorLength, pNext = state;
}
/*
#define SVL 624
inline void
MersenneTwisterRandomVariateGenerator::SetSeed(
IntegerType *const bigSeed, const IntegerType seedLength)
{
// Seed the generator with an array of IntegerType's
// There are 2^19937-1 possible initial states. This function allows
// all of those to be accessed by providing at least 19937 bits (with a
// default seed length of StateVectorLength = 624 IntegerType's).
// Any bits above the lower 32
// in each element are discarded.
// Just call seed() if you want to get array from /dev/urandom
Initialize(19650218UL);
register IntegerType i = 1;
register IntegerType j = 0;
register int k;
if ( StateVectorLength > seedLength )
{
k = StateVectorLength;
}
else
{
k = seedLength;
}
for (; k; --k )
{
state[i] =
state[i] ^ ( ( state[i - 1] ^ ( state[i - 1] >> 30 ) ) * 1664525UL );
state[i] += ( bigSeed[j] & 0xffffffffUL ) + j;
state[i] &= 0xffffffffUL;
++i; ++j;
if ( i >= StateVectorLength ) { state[0] = state[StateVectorLength - 1]; i = 1; }
if ( j >= seedLength ) { j = 0; }
}
for ( k = StateVectorLength - 1; k; --k )
{
state[i] =
state[i] ^ ( ( state[i - 1] ^ ( state[i - 1] >> 30 ) ) * 1566083941UL );
state[i] -= i;
state[i] &= 0xffffffffUL;
++i;
if ( i >= SVL )
{
state[0] = state[StateVectorLength - 1]; i = 1;
}
}
state[0] = 0x80000000UL; // MSB is 1, assuring non-zero initial array
reload();
}
*/
inline void
MersenneTwisterRandomVariateGenerator::Initialize()
{
SetSeed();
}
inline void
MersenneTwisterRandomVariateGenerator::SetSeed(const IntegerType oneSeed)
{
// Seed the generator with a simple IntegerType
Initialize(oneSeed);
reload();
}
inline void
MersenneTwisterRandomVariateGenerator::SetSeed()
{
// use time() and clock() to generate a unlikely-to-repeat seed.
SetSeed( hash( vcl_time(0), vcl_clock() ) );
}
/** Get an integer variate in [0, 2^32-1] */
inline MersenneTwisterRandomVariateGenerator::IntegerType
MersenneTwisterRandomVariateGenerator::GetIntegerVariate()
{
if ( left == 0 ) { reload(); }
--left;
register IntegerType s1;
s1 = *pNext++;
s1 ^= ( s1 >> 11 );
s1 ^= ( s1 << 7 ) & 0x9d2c5680;
s1 ^= ( s1 << 15 ) & 0xefc60000;
return ( s1 ^ ( s1 >> 18 ) );
}
inline double
MersenneTwisterRandomVariateGenerator::GetVariateWithClosedRange()
{
return double( GetIntegerVariate() ) * ( 1.0 / 4294967295.0 );
}
/** Get a random variate in the range [0, n] */
inline double
MersenneTwisterRandomVariateGenerator::GetVariateWithClosedRange(
const double & n)
{
return GetVariateWithClosedRange() * n;
}
/** Get a range variate in the range [0, 1) */
inline double
MersenneTwisterRandomVariateGenerator::GetVariateWithOpenUpperRange()
{
return double( GetIntegerVariate() ) * ( 1.0 / 4294967296.0 );
}
/** Get a range variate in the range [0, n) */
inline double
MersenneTwisterRandomVariateGenerator::GetVariateWithOpenUpperRange(
const double & n)
{
return GetVariateWithOpenUpperRange() * n;
}
/** Get a range variate in the range (0, 1) */
inline double
MersenneTwisterRandomVariateGenerator::GetVariateWithOpenRange()
{
return ( double( GetIntegerVariate() ) + 0.5 ) * ( 1.0 / 4294967296.0 );
}
/** Get a range variate in the range (0, n) */
inline double
MersenneTwisterRandomVariateGenerator::GetVariateWithOpenRange(
const double & n)
{
return GetVariateWithOpenRange() * n;
}
inline MersenneTwisterRandomVariateGenerator::IntegerType
MersenneTwisterRandomVariateGenerator::GetIntegerVariate(
const IntegerType & n)
{
// Find which bits are used in n
// Optimized by Magnus Jonsson magnus at smartelectronix dot com
IntegerType used = n;
used |= used >> 1;
used |= used >> 2;
used |= used >> 4;
used |= used >> 8;
used |= used >> 16;
// Draw numbers until one is found in [0,n]
IntegerType i;
do
{
i = GetIntegerVariate() & used; // toss unused bits to shorten search
}
while ( i > n );
return i;
}
/** Access to 53-bit random numbers (capacity of IEEE double precision)
* in the range [0,1) */
inline double
MersenneTwisterRandomVariateGenerator::Get53BitVariate()
{
IntegerType a = GetIntegerVariate() >> 5, b = GetIntegerVariate() >> 6;
return ( a * 67108864.0 + b ) * ( 1.0 / 9007199254740992.0 ); // by Isaku
// Wada
}
/* Access to a normal random number distribution */
// TODO: Compare with vnl_sample_normal
inline double
MersenneTwisterRandomVariateGenerator::GetNormalVariate(
const double & mean, const double & variance)
{
// Return a real number from a normal (Gaussian) distribution with given
// mean and variance by Box-Muller method
double r = vcl_sqrt(-2.0 * vcl_log( 1.0 - GetVariateWithOpenRange() ) * variance);
double phi = 2.0 * vnl_math::pi
* GetVariateWithOpenUpperRange();
return mean + r *vcl_cos(phi);
}
/* Access to a uniform random number distribution */
// TODO: Compare with vnl_sample_uniform
inline double
MersenneTwisterRandomVariateGenerator::GetUniformVariate(
const double & a, const double & b)
{
double u = GetVariateWithOpenUpperRange();
return ( ( 1.0 - u ) * a + u * b );
}
inline double
MersenneTwisterRandomVariateGenerator::GetVariate()
{
return GetVariateWithClosedRange();
}
inline double
MersenneTwisterRandomVariateGenerator::operator()()
{
return GetVariate();
}
inline
MersenneTwisterRandomVariateGenerator::MersenneTwisterRandomVariateGenerator()
{
SetSeed (121212);
}
/* Change log from MTRand.h */
// Change log:
//
// v0.1 - First release on 15 May 2000
// - Based on code by Makoto Matsumoto, Takuji Nishimura, and Shawn Cokus
// - Translated from C to C++
// - Made completely ANSI compliant
// - Designed convenient interface for initialization, seeding, and
// obtaining numbers in default or user-defined ranges
// - Added automatic seeding from /dev/urandom or time() and clock()
// - Provided functions for saving and loading generator state
//
// v0.2 - Fixed bug which reloaded generator one step too late
//
// v0.3 - Switched to clearer, faster reload() code from Matthew Bellew
//
// v0.4 - Removed trailing newline in saved generator format to be consistent
// with output format of built-in types
//
// v0.5 - Improved portability by replacing static const int's with enum's and
// clarifying return values in seed(); suggested by Eric Heimburg
// - Removed MAXINT constant; use 0xffffffffUL instead
//
// v0.6 - Eliminated seed overflow when uint32 is larger than 32 bits
// - Changed integer [0,n] generator to give better uniformity
//
// v0.7 - Fixed operator precedence ambiguity in reload()
// - Added access for real numbers in (0,1) and (0,n)
//
// v0.8 - Included time.h header to properly support time_t and clock_t
//
// v1.0 - Revised seeding to match 26 Jan 2002 update of Nishimura and Matsumoto
// - Allowed for seeding with arrays of any length
// - Added access for real numbers in [0,1) with 53-bit resolution
// - Added access for real numbers from normal (Gaussian) distributions
// - Increased overall speed by optimizing twist()
// - Doubled speed of integer [0,n] generation
// - Fixed out-of-range number generation on 64-bit machines
// - Improved portability by substituting literal constants for long enum's
// - Changed license from GNU LGPL to BSD
} // end of namespace Statistics
} // end of namespace itk
#endif
|