This file is indexed.

/usr/include/ITK-4.5/itkMeshIOBase.h is in libinsighttoolkit4-dev 4.5.0-3.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
/*=========================================================================
 *
 *  Copyright Insight Software Consortium
 *
 *  Licensed under the Apache License, Version 2.0 (the "License");
 *  you may not use this file except in compliance with the License.
 *  You may obtain a copy of the License at
 *
 *         http://www.apache.org/licenses/LICENSE-2.0.txt
 *
 *  Unless required by applicable law or agreed to in writing, software
 *  distributed under the License is distributed on an "AS IS" BASIS,
 *  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 *  See the License for the specific language governing permissions and
 *  limitations under the License.
 *
 *=========================================================================*/
#ifndef __itkMeshIOBase_h
#define __itkMeshIOBase_h
#include "ITKIOMeshExport.h"

#include "itkByteSwapper.h"
#include "itkCellInterface.h"
#include "itkCovariantVector.h"
#include "itkDiffusionTensor3D.h"
#include "itkIntTypes.h"
#include "itkLightProcessObject.h"
#include "itkMatrix.h"
#include "itkRGBPixel.h"
#include "itkRGBAPixel.h"
#include "itkSymmetricSecondRankTensor.h"
#include "itkVariableLengthVector.h"
#include "itkVariableSizeMatrix.h"
#include "itkVector.h"
#include "itkNumberToString.h"

#include <string>
#include <complex>
#include <fstream>

namespace itk
{
/** \class MeshIOBase
 * \brief Abstract superclass defines mesh IO interface.
 *
 * MeshIOBase is a class that reads and/or writes Mesh / QuadEdgeMesh data
 * of a particular format (such as PNG or raw binary). The
 * MeshIOBase encapsulates both the reading and writing of data. The
 * MeshIOBase is used by the MeshFileReader class (to read data)
 * and the MeshFileWriter (to write data) into a single file.
 * Normally the user does not directly
 * manipulate this class other than to instantiate it, set the FileName,
 * and assign it to a MeshFileReader or MeshFileWriter.
 *
 * A Pluggable factory pattern is used this allows different kinds of readers
 * to be registered (even at run time) without having to modify the
 * code in this class.
 *
 * \author Wanlin Zhu. Uviversity of New South Wales, Australia.
 *
 * \sa MeshFileWriter
 * \sa MeshFileReader
 *
 * \ingroup IOFilters
 * \ingroup ITKIOMesh
 *
 */

class ITKIOMesh_EXPORT MeshIOBase:public LightProcessObject
{
public:
  /** Standard class typedefs. */
  typedef MeshIOBase                 Self;
  typedef LightProcessObject         Superclass;
  typedef SmartPointer< const Self > ConstPointer;
  typedef SmartPointer< Self >       Pointer;

  /** Type for the list of strings to be used for extensions.  */
  typedef  std::vector< std::string > ArrayOfExtensionsType;

  /** Type for representing size of bytes, and or positions along a file */
  typedef std::streamoff StreamOffsetType;

  typedef IdentifierType SizeValueType;

  /**
    * \class UnknownType
    * Used to return information when types are unknown.
    * \ingroup ITKIOMesh
    */
  class UnknownType {};

  /** Run-time type information (and related methods). */
  itkTypeMacro(MeshIOBase, LightProcessObject);

  /** Set/Get the name of the file to be read. */
  itkSetStringMacro(FileName);
  itkGetStringMacro(FileName);

  /** Enums used to manipulate the point/cell pixel type. The pixel type provides
     * context for automatic data conversions (for instance, RGB to
     * SCALAR, VECTOR to SCALAR). */
  typedef  enum {UNKNOWNPIXELTYPE, SCALAR, RGB, RGBA, OFFSET, VECTOR,
                 POINT, COVARIANTVECTOR, SYMMETRICSECONDRANKTENSOR,
                 DIFFUSIONTENSOR3D, COMPLEX, FIXEDARRAY, ARRAY, MATRIX,
                 VARIABLELENGTHVECTOR, VARIABLESIZEMATRIX}  IOPixelType;

  /** Enums used to manipulate the component type. The component type
   * refers to the actual storage class associated with either a
   * SCALAR pixel type or elements of a compound pixel. */
  typedef  enum {UNKNOWNCOMPONENTTYPE, UCHAR, CHAR, USHORT, SHORT, UINT, INT,
                 ULONG, LONG, LONGLONG, ULONGLONG, FLOAT, DOUBLE, LDOUBLE} IOComponentType;

  /** Enums used to specify write style: whether binary or ASCII. Some
    * subclasses use this, some ignore it. */
  typedef  enum {ASCII, BINARY, TYPENOTAPPLICABLE} FileType;

  /** Enums used to specify byte order; whether Big Endian or Little Endian.
  * Some subclasses use this, some ignore it. */
  typedef  enum {BigEndian, LittleEndian, OrderNotApplicable} ByteOrder;

  /** Enums used to specify cell type */
  typedef  enum {VERTEX_CELL = 0, LINE_CELL, TRIANGLE_CELL,
                 QUADRILATERAL_CELL, POLYGON_CELL, TETRAHEDRON_CELL, HEXAHEDRON_CELL,
                 QUADRATIC_EDGE_CELL, QUADRATIC_TRIANGLE_CELL,
                 LAST_ITK_CELL, MAX_ITK_CELLS = 255}  CellGeometryType;

  /** Set/Get the type of the point/cell pixel. The PixelTypes provides context
    * to the IO mechanisms for data conversions.  PixelTypes can be
    * SCALAR, RGB, RGBA, VECTOR, COVARIANTVECTOR, POINT, INDEX. If
    * the PIXELTYPE is SCALAR, then the NumberOfComponents should be 1.
    * Any other of PIXELTYPE will have more than one component. */
  itkSetEnumMacro(PointPixelType, IOPixelType);
  itkGetEnumMacro(PointPixelType, IOPixelType);
  itkSetEnumMacro(CellPixelType, IOPixelType);
  itkGetEnumMacro(CellPixelType, IOPixelType);

  /** Set/Get the component type of the point, cell, point data and cell data.
    This is always a native type. */
  itkSetEnumMacro(PointComponentType, IOComponentType);
  itkGetEnumMacro(PointComponentType, IOComponentType);
  itkSetEnumMacro(CellComponentType, IOComponentType);
  itkGetEnumMacro(CellComponentType, IOComponentType);
  itkSetEnumMacro(PointPixelComponentType, IOComponentType);
  itkGetEnumMacro(PointPixelComponentType, IOComponentType);
  itkSetEnumMacro(CellPixelComponentType, IOComponentType);
  itkGetEnumMacro(CellPixelComponentType, IOComponentType);

  template< typename T >
  struct MapComponentType {
    static const IOComponentType CType = UNKNOWNCOMPONENTTYPE;
  };

  template< typename T >
  void SetPixelType(const T & itkNotUsed(dummy), bool UsePointPixel = true)
  {
    if ( UsePointPixel )
      {
      SetNumberOfPointPixelComponents(1);
      SetPointPixelComponentType(MapComponentType< T >::CType);
      SetPointPixelType(SCALAR);
      }
    else
      {
      SetNumberOfCellPixelComponents(1);
      SetCellPixelComponentType(MapComponentType< T >::CType);
      SetCellPixelType(SCALAR);
      }
  }

  template< typename T >
  void SetPixelType(const RGBPixel< T > & itkNotUsed(dummy), bool UsePointPixel = true)
  {
    if ( UsePointPixel )
      {
      SetNumberOfPointPixelComponents(3);
      SetPointPixelComponentType(MapComponentType< T >::CType);
      SetPointPixelType(RGB);
      }
    else
      {
      SetNumberOfCellPixelComponents(3);
      SetCellPixelComponentType(MapComponentType< T >::CType);
      SetCellPixelType(RGB);
      }
  }

  template< typename T >
  void SetPixelType(const RGBAPixel< T > & itkNotUsed(dummy), bool UsePointPixel = true)
  {
    if ( UsePointPixel )
      {
      SetNumberOfPointPixelComponents(4);
      SetPointPixelComponentType(MapComponentType< T >::CType);
      SetPointPixelType(RGBA);
      }
    else
      {
      SetNumberOfCellPixelComponents(4);
      SetCellPixelComponentType(MapComponentType< T >::CType);
      SetCellPixelType(RGBA);
      }
  }

  template< typename T, unsigned int VLength >
  void SetPixelType(const Vector< T, VLength > & itkNotUsed(dummy), bool UsePointPixel = true)
  {
    if ( UsePointPixel )
      {
      SetNumberOfPointPixelComponents(VLength);
      SetPointPixelComponentType(MapComponentType< T >::CType);
      SetPointPixelType(VECTOR);
      }
    else
      {
      SetNumberOfCellPixelComponents(VLength);
      SetCellPixelComponentType(MapComponentType< T >::CType);
      SetCellPixelType(VECTOR);
      }
  }

  template< typename T, unsigned int VLength >
  void SetPixelType(const CovariantVector< T, VLength > & itkNotUsed(dummy), bool UsePointPixel = true)
  {
    if ( UsePointPixel )
      {
      SetNumberOfPointPixelComponents(VLength);
      SetPointPixelComponentType(MapComponentType< T >::CType);
      SetPointPixelType(COVARIANTVECTOR);
      }
    else
      {
      SetNumberOfCellPixelComponents(VLength);
      SetCellPixelComponentType(MapComponentType< T >::CType);
      SetCellPixelType(COVARIANTVECTOR);
      }
  }

  template< typename T, unsigned int VLength >
  void SetPixelType(const FixedArray< T, VLength > & itkNotUsed(dummy), bool UsePointPixel = true)
  {
    if ( UsePointPixel )
      {
      SetNumberOfPointPixelComponents(VLength);
      SetPointPixelComponentType(MapComponentType< T >::CType);
      SetPointPixelType(FIXEDARRAY);
      }
    else
      {
      SetNumberOfCellPixelComponents(VLength);
      SetCellPixelComponentType(MapComponentType< T >::CType);
      SetCellPixelType(FIXEDARRAY);
      }
  }

  template< typename T, unsigned int VLength >
  void SetPixelType(const SymmetricSecondRankTensor< T, VLength > itkNotUsed(dummy), bool UsePointPixel = true)
  {
    if ( UsePointPixel )
      {
      SetNumberOfPointPixelComponents(VLength * ( VLength + 1 ) / 2);
      SetPointPixelComponentType(MapComponentType< T >::CType);
      SetPointPixelType(SYMMETRICSECONDRANKTENSOR);
      }
    else
      {
      SetNumberOfCellPixelComponents(VLength * ( VLength + 1 ) / 2);
      SetCellPixelComponentType(MapComponentType< T >::CType);
      SetCellPixelType(SYMMETRICSECONDRANKTENSOR);
      }
  }

  template< typename T >
  void SetPixelType(const DiffusionTensor3D< T > & itkNotUsed(dummy), bool UsePointPixel = true)
  {
    if ( UsePointPixel )
      {
      SetNumberOfPointPixelComponents(6);
      SetPointPixelComponentType(MapComponentType< T >::CType);
      SetPointPixelType(DIFFUSIONTENSOR3D);
      }
    else
      {
      SetNumberOfCellPixelComponents(6);
      SetCellPixelComponentType(MapComponentType< T >::CType);
      SetCellPixelType(DIFFUSIONTENSOR3D);
      }
  }

  template< typename T, unsigned int NR, unsigned int NC >
  void SetPixelType(const Matrix< T, NR, NC > & itkNotUsed(dummy), bool UsePointPixel = true)
  {
    if ( UsePointPixel )
      {
      SetNumberOfPointPixelComponents(NR * NC);
      SetPointPixelComponentType(MapComponentType< T >::CType);
      SetPointPixelType(MATRIX);
      }
    else
      {
      SetNumberOfCellPixelComponents(NR * NC);
      SetCellPixelComponentType(MapComponentType< T >::CType);
      SetCellPixelType(MATRIX);
      }
  }

  template< typename T >
  void SetPixelType(const std::complex< T > & itkNotUsed(dummy), bool UsePointPixel = true)
  {
    if ( UsePointPixel )
      {
      SetNumberOfPointPixelComponents(2);
      SetPointPixelComponentType(MapComponentType< T >::CType);
      SetPointPixelType(COMPLEX);
      }
    else
      {
      SetNumberOfCellPixelComponents(2);
      SetCellPixelComponentType(MapComponentType< T >::CType);
      SetCellPixelType(COMPLEX);
      }
  }

  template< typename T >
  void SetPixelType(const Array< T > & array, bool UsePointPixel = true)
  {
    if ( UsePointPixel )
      {
      SetNumberOfPointPixelComponents( array.Size() );
      SetPointPixelComponentType(MapComponentType< T >::CType);
      SetPointPixelType(ARRAY);
      }
    else
      {
      SetNumberOfCellPixelComponents( array.Size() );
      SetCellPixelComponentType(MapComponentType< T >::CType);
      SetCellPixelType(ARRAY);
      }
  }

  template< typename T >
  void SetPixelType(const VariableLengthVector< T > & vector, bool UsePointPixel = true)
  {
    if ( UsePointPixel )
      {
      SetNumberOfPointPixelComponents( vector.Size() );
      SetPointPixelComponentType(MapComponentType< T >::CType);
      SetPointPixelType(VARIABLELENGTHVECTOR);
      }
    else
      {
      SetNumberOfCellPixelComponents( vector.Size() );
      SetCellPixelComponentType(MapComponentType< T >::CType);
      SetCellPixelType(VARIABLELENGTHVECTOR);
      }
  }

  template< typename T >
  void SetPixelType(const VariableSizeMatrix< T > & matrix, bool UsePointPixel = true)
  {
    if ( UsePointPixel )
      {
      SetNumberOfPointPixelComponents( matrix.Rows() * matrix.Cols() );
      SetPointPixelComponentType(MapComponentType< T >::CType);
      SetPointPixelType(VARIABLESIZEMATRIX);
      }
    else
      {
      SetNumberOfCellPixelComponents( matrix.Rows() * matrix.Cols() );
      SetCellPixelComponentType(MapComponentType< T >::CType);
      SetCellPixelType(VARIABLESIZEMATRIX);
      }
  }

  /** Set/Get the number of components per pixel in the mesh. This may
     * be set by the reading process. For SCALAR pixel types,
     * NumberOfComponents will be 1.  For other pixel types,
     * NumberOfComponents will be greater than or equal to one. */
  itkSetMacro(NumberOfPointPixelComponents, unsigned int);
  itkGetConstMacro(NumberOfPointPixelComponents, unsigned int);
  itkSetMacro(NumberOfCellPixelComponents, unsigned int);
  itkGetConstMacro(NumberOfCellPixelComponents, unsigned int);
  itkSetMacro(PointDimension, unsigned int);
  itkGetConstMacro(PointDimension, unsigned int);
  itkSetMacro(NumberOfPoints, SizeValueType);
  itkGetConstMacro(NumberOfPoints, SizeValueType);
  itkSetMacro(NumberOfCells, SizeValueType);
  itkGetConstMacro(NumberOfCells, SizeValueType);
  itkSetMacro(NumberOfPointPixels, SizeValueType);
  itkGetConstMacro(NumberOfPointPixels, SizeValueType);
  itkSetMacro(NumberOfCellPixels, SizeValueType);
  itkGetConstMacro(NumberOfCellPixels, SizeValueType);
  itkSetMacro(CellBufferSize, SizeValueType);
  itkGetConstMacro(CellBufferSize, SizeValueType);
  itkSetMacro(UpdatePoints, bool);
  itkGetConstMacro(UpdatePoints, bool);
  itkSetMacro(UpdateCells, bool);
  itkGetConstMacro(UpdateCells, bool);
  itkSetMacro(UpdatePointData, bool);
  itkGetConstMacro(UpdatePointData, bool);
  itkSetMacro(UpdateCellData, bool);
  itkGetConstMacro(UpdateCellData, bool);

  unsigned int GetComponentSize(IOComponentType componentType) const;

  /** Convenience method returns the IOComponentType as a string. This can be
     * used for writing output files. */
  std::string GetComponentTypeAsString(IOComponentType) const;

  /** Convenience method returns the IOPixelType as a string. This can be
   * used for writing output files. */
  std::string GetPixelTypeAsString(IOPixelType) const;

  /** These methods control whether the file is written binary or ASCII.
  * Many file formats (i.e., subclasses) ignore this flag. */
  itkSetEnumMacro(FileType, FileType);
  itkGetEnumMacro(FileType, FileType);

  void SetFileTypeToASCII()
  {
    this->SetFileType(ASCII);
  }

  void SetFileTypeToBinary()
  {
    this->SetFileType(BINARY);
  }

  /** These methods indicate the byte ordering of the file you are
     * trying to read in. These methods will then either swap or not
     * swap the bytes depending on the byte ordering of the machine it
     * is being run on. For example, reading in a BigEndian file on a
     * BigEndian machine will result in no swapping. Trying to read the
     * same file on a LittleEndian machine will result in swapping.
     * Note: most UNIX machines are BigEndian while PC's and VAX's are
     * LittleEndian. So if the file you are reading in was generated on
     * a VAX or PC, SetByteOrderToLittleEndian() otherwise
     * SetByteOrderToBigEndian().  Some MeshIOBase subclasses
     * ignore these methods. */
  itkSetEnumMacro(ByteOrder, ByteOrder);
  itkGetEnumMacro(ByteOrder, ByteOrder);

  void SetByteOrderToBigEndian()
  {
    this->SetByteOrder(BigEndian);
  }

  void SetByteOrderToLittleEndian()
  {
    this->SetByteOrder(LittleEndian);
  }

  /** Set/Get a boolean to use the compression or not. */
  itkSetMacro(UseCompression, bool);
  itkGetConstMacro(UseCompression, bool);
  itkBooleanMacro(UseCompression);

  /** Convenience method returns the FileType as a string. This can be
     * used for writing output files. */
  std::string GetFileTypeAsString(FileType) const;

  /** Convenience method returns the ByteOrder as a string. This can be
   * used for writing output files. */
  std::string GetByteOrderAsString(ByteOrder) const;

  /*-------- This part of the interfaces deals with reading data ----- */
  /** Determine the file type. Returns true if this MeshIO can read the
     * file specified. */
  virtual bool CanReadFile(const char *) = 0;

  /** Determin the required information and whether need to ReadPoints,
    ReadCells, ReadPointData and ReadCellData */
  virtual void ReadMeshInformation() = 0;

  /** Reads the data from disk into the memory buffer provided. */
  virtual void ReadPoints(void *buffer) = 0;

  virtual void ReadCells(void *buffer) = 0;

  virtual void ReadPointData(void *buffer) = 0;

  virtual void ReadCellData(void *buffer) = 0;

  /*-------- This part of the interfaces deals with writing data ----- */

  /** Writes the data to disk from the memory buffer provided. Make sure
     * that the IORegions has been set properly. */
  virtual bool CanWriteFile(const char *)  = 0;

  virtual void WriteMeshInformation() = 0;

  virtual void WritePoints(void *buffer) = 0;

  virtual void WriteCells(void *buffer) = 0;

  virtual void WritePointData(void *buffer) = 0;

  virtual void WriteCellData(void *buffer) = 0;

  virtual void Write() = 0;

  /** This method returns an array with the list of filename extensions
   * supported for reading by this MeshIO class. This is intended to
   * facilitate GUI and application level integration.
   */
  const ArrayOfExtensionsType & GetSupportedReadExtensions() const;

  /** This method returns an array with the list of filename extensions
   * supported for writing by this MeshIO class. This is intended to
   * facilitate GUI and application level integration.
   */
  const ArrayOfExtensionsType & GetSupportedWriteExtensions() const;

protected:
  MeshIOBase();
  virtual ~MeshIOBase(){}

  void PrintSelf(std::ostream & os, Indent indent) const;

  /** Insert an extension to the list of supported extensions for reading. */
  void AddSupportedReadExtension(const char *extension);

  /** Insert an extension to the list of supported extensions for writing. */
  void AddSupportedWriteExtension(const char *extension);

  /** Read data from input file stream to buffer with ascii style */
  template< typename T >
  void ReadBufferAsAscii(T *buffer, std::ifstream & inputFile, SizeValueType numberOfComponents)
  {
    for ( SizeValueType i = 0; i < numberOfComponents; i++ )
      {
      inputFile >> buffer[i];
      }
  }

  /** Read data from input file to buffer with binary style */
  template< typename T >
  void ReadBufferAsBinary(T *buffer, std::ifstream & inputFile, SizeValueType numberOfComponents)
  {
    inputFile.read( reinterpret_cast< char * >( buffer ), numberOfComponents * sizeof( T ) );

    if ( m_ByteOrder == BigEndian )
      {
      if ( itk::ByteSwapper< T >::SystemIsLittleEndian() )
        {
        itk::ByteSwapper< T >::SwapRangeFromSystemToBigEndian(buffer, numberOfComponents);
        }
      }
    else if ( m_ByteOrder == LittleEndian )
      {
      if ( itk::ByteSwapper< T >::SystemIsBigEndian() )
        {
        itk::ByteSwapper< T >::SwapRangeFromSystemToLittleEndian(buffer, numberOfComponents);
        }
      }
  }

  /** Write buffer to output file stream with ascii style */
  template< typename T >
  void WriteBufferAsAscii(T *buffer, std::ofstream & outputFile, SizeValueType numberOfLines, SizeValueType numberOfComponents)
  {
    NumberToString<T> convert;
    for ( SizeValueType ii = 0; ii < numberOfLines; ii++ )
      {
      for ( SizeValueType jj = 0; jj < numberOfComponents; jj++ )
        {
        outputFile << convert(buffer[ii * numberOfComponents + jj]) << "  ";
        }
      outputFile << '\n';
      }
  }

  /** Write buffer to output file stream with binary style */
  template< typename TOutput, typename TInput >
  void WriteBufferAsBinary(TInput *buffer, std::ofstream & outputFile, SizeValueType numberOfComponents)
  {
    if ( typeid( TInput ) == typeid( TOutput ) )
      {
      if ( m_ByteOrder == BigEndian && itk::ByteSwapper< TInput >::SystemIsLittleEndian() )
        {
        itk::ByteSwapper< TInput >::SwapRangeFromSystemToBigEndian(buffer, numberOfComponents);
        }
      else if ( m_ByteOrder == LittleEndian && itk::ByteSwapper< TInput >::SystemIsBigEndian() )
        {
        itk::ByteSwapper< TInput >::SwapRangeFromSystemToLittleEndian(buffer, numberOfComponents);
        }

      outputFile.write(reinterpret_cast< char * >( buffer ), numberOfComponents);
      }
    else
      {
      TOutput *data = new TOutput[numberOfComponents];
      for ( SizeValueType ii = 0; ii < numberOfComponents; ii++ )
        {
        data[ii] = static_cast< TOutput >( buffer[ii] );
        }

      if ( m_ByteOrder == BigEndian && itk::ByteSwapper< TOutput >::SystemIsLittleEndian() )
        {
        itk::ByteSwapper< TOutput >::SwapRangeFromSystemToBigEndian(data, numberOfComponents);
        }
      else if ( m_ByteOrder == LittleEndian && itk::ByteSwapper< TOutput >::SystemIsBigEndian() )
        {
        itk::ByteSwapper< TOutput >::SwapRangeFromSystemToLittleEndian(data, numberOfComponents);
        }

      outputFile.write(reinterpret_cast< char * >( data ), numberOfComponents);
      delete[] data;
      }
  }

  /** Read cells from a data buffer, used when writting cells. This function
    write all kind of cells as it is stored in cells container. It is used when
    cells container have only one kind of cells */
  template< typename TInput, typename TOutput >
  void ReadCellsBuffer(TInput *input, TOutput *output)
  {
    if ( input && output )
      {
      SizeValueType inputIndex = NumericTraits< SizeValueType >::Zero;
      SizeValueType outputIndex = NumericTraits< SizeValueType >::Zero;
      for ( SizeValueType ii = 0; ii < m_NumberOfCells; ii++ )
        {
        inputIndex++; // ignore the cell type
        unsigned int numberOfPoints = static_cast< unsigned int >( input[inputIndex++] );
        for ( unsigned int jj = 0; jj < numberOfPoints; jj++ )
          {
          output[outputIndex++] = static_cast< TOutput >( input[inputIndex++] );
          }
        }
      }
  }

  /** Read cells from input buffer, used when Writting cells. This function only
    write specified type of cells(used when input cells container composes
    multiple type of cells and only want to write a specified cell type */
  template< typename TInput, typename TOutput >
  void ReadCellsBuffer(TInput *input, TOutput *output, MeshIOBase::CellGeometryType type)
  {
    if ( input && output )
      {
      SizeValueType inputIndex = itk::NumericTraits< SizeValueType >::Zero;
      SizeValueType outputIndex = itk::NumericTraits< SizeValueType >::Zero;

      for ( SizeValueType ii = 0; ii < m_NumberOfCells; ii++ )
        {
        MeshIOBase::CellGeometryType cellType = static_cast< MeshIOBase::CellGeometryType >( input[inputIndex++] );
        unsigned int                 nn = static_cast< unsigned int >( input[inputIndex++] );
        if ( cellType == type )
          {
          output[outputIndex++] = nn;
          for ( unsigned int jj = 0; jj < nn; jj++ )
            {
            output[outputIndex++] = static_cast< TOutput >( input[inputIndex++] );
            }
          }
        else
          {
          inputIndex += nn;
          }
        }
      }
  }

  /** Write cells to a data buffer, used when readding mesh, used for cellType
    with constant number of points */
  template< typename TInput, typename TOutput >
  void WriteCellsBuffer(TInput *input, TOutput *output, CellGeometryType cellType, unsigned int numberOfPoints, SizeValueType numberOfCells)
  {
    if ( input && output )
      {
      SizeValueType inputIndex = NumericTraits< SizeValueType >::Zero;
      SizeValueType outputIndex = NumericTraits< SizeValueType >::Zero;
      for ( SizeValueType ii = 0; ii < numberOfCells; ii++ )
        {
        output[outputIndex++] = static_cast< TOutput >( cellType );
        output[outputIndex++] = static_cast< TOutput >( numberOfPoints );
        for ( unsigned int jj = 0; jj < numberOfPoints; jj++ )
          {
          output[outputIndex++] = static_cast< TOutput >( input[inputIndex++] );
          }
        }
      }
  }

  /** Write cells to a data buffer, used when readding mesh, used for cellType
    with non-constant number of points */
  template< typename TInput, typename TOutput >
  void WriteCellsBuffer(TInput *input, TOutput *output, CellGeometryType cellType, SizeValueType numberOfCells)
  {
    if ( input && output )
      {
      SizeValueType inputIndex = NumericTraits< SizeValueType >::Zero;
      SizeValueType outputIndex = NumericTraits< SizeValueType >::Zero;
      for ( SizeValueType ii = 0; ii < numberOfCells; ii++ )
        {
        unsigned int numberOfPoints = static_cast< unsigned int >( input[inputIndex++] );
        output[outputIndex++] = static_cast< TOutput >( cellType );
        output[outputIndex++] = static_cast< TOutput >( numberOfPoints );
        for ( unsigned int jj = 0; jj < numberOfPoints; jj++ )
          {
          output[outputIndex++] = static_cast< TOutput >( input[inputIndex++] );
          }
        }
      }
  }

protected:
  /** Big or Little Endian, and the type of the file. (May be ignored.) */
  ByteOrder m_ByteOrder;
  FileType  m_FileType;

  /** Filename to read */
  std::string m_FileName;

  /** Should we compress the data? */
  bool m_UseCompression;

  /** Used internally to keep track of the type of the component. */
  IOComponentType m_PointComponentType;
  IOComponentType m_CellComponentType;
  IOComponentType m_PointPixelComponentType;
  IOComponentType m_CellPixelComponentType;

  /** Used internally to keep track of the type of the pixel. */
  IOPixelType m_PointPixelType;
  IOPixelType m_CellPixelType;

  /** Stores the number of components per pixel. This will be 1 for
    * grayscale images, 3 for RGBPixel images, and 4 for RGBPixelA images. */
  unsigned int m_NumberOfPointPixelComponents;
  unsigned int m_NumberOfCellPixelComponents;

  /** The number of independent dimensions in the point. */
  unsigned int m_PointDimension;

  /** The number of points and cells */
  SizeValueType m_NumberOfPoints;
  SizeValueType m_NumberOfCells;
  SizeValueType m_NumberOfPointPixels;
  SizeValueType m_NumberOfCellPixels;

  /** The buffer size of cells */
  SizeValueType m_CellBufferSize;

  /** Flags indicate whether read or write points, cells, point data and cell
    data */
  bool m_UpdatePoints;
  bool m_UpdateCells;
  bool m_UpdatePointData;
  bool m_UpdateCellData;

private:
  MeshIOBase(const Self &);     // purposely not implemented
  void operator=(const Self &); // purposely not implemented

  ArrayOfExtensionsType m_SupportedReadExtensions;
  ArrayOfExtensionsType m_SupportedWriteExtensions;
};
#define MESHIOBASE_TYPEMAP(type, ctype)            \
  template< >                                      \
  struct MeshIOBase:: MapComponentType< type >     \
  {                                                \
    static const IOComponentType CType = ctype;    \
  }

MESHIOBASE_TYPEMAP(unsigned char, UCHAR);
MESHIOBASE_TYPEMAP(char, CHAR);
MESHIOBASE_TYPEMAP(unsigned short, USHORT);
MESHIOBASE_TYPEMAP(short, SHORT);
MESHIOBASE_TYPEMAP(unsigned int, UINT);
MESHIOBASE_TYPEMAP(int, INT);
MESHIOBASE_TYPEMAP(unsigned long, ULONG);
MESHIOBASE_TYPEMAP(long, LONG);
MESHIOBASE_TYPEMAP(unsigned long long, ULONGLONG);
MESHIOBASE_TYPEMAP(long long, LONGLONG);
MESHIOBASE_TYPEMAP(float, FLOAT);
MESHIOBASE_TYPEMAP(double, DOUBLE);
MESHIOBASE_TYPEMAP(long double, LDOUBLE);
#undef MESHIOBASE_TYPEMAP
} // end namespace itk

#endif