This file is indexed.

/usr/include/ITK-4.5/itkMultiGradientOptimizerv4.hxx is in libinsighttoolkit4-dev 4.5.0-3.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
/*=========================================================================
 *
 *  Copyright Insight Software Consortium
 *
 *  Licensed under the Apache License, Version 2.0 (the "License");
 *  you may not use this file except in compliance with the License.
 *  You may obtain a copy of the License at
 *
 *         http://www.apache.org/licenses/LICENSE-2.0.txt
 *
 *  Unless required by applicable law or agreed to in writing, software
 *  distributed under the License is distributed on an "AS IS" BASIS,
 *  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 *  See the License for the specific language governing permissions and
 *  limitations under the License.
 *
 *=========================================================================*/
#ifndef __itkMultiGradientOptimizerv4_hxx
#define __itkMultiGradientOptimizerv4_hxx

#include "itkMultiGradientOptimizerv4.h"

namespace itk
{

//-------------------------------------------------------------------
template<typename TInternalComputationValueType>
MultiGradientOptimizerv4Template<TInternalComputationValueType>
::MultiGradientOptimizerv4Template()
{
  this->m_NumberOfIterations = static_cast<SizeValueType>(0);
  this->m_CurrentIteration   = static_cast<SizeValueType>(0);
  this->m_StopCondition      = Superclass::MAXIMUM_NUMBER_OF_ITERATIONS;
  this->m_StopConditionDescription << this->GetNameOfClass() << ": ";

  this->m_MaximumMetricValue=NumericTraits<MeasureType>::max();
  this->m_MinimumMetricValue = this->m_MaximumMetricValue;
  }

//-------------------------------------------------------------------
template<typename TInternalComputationValueType>
MultiGradientOptimizerv4Template<TInternalComputationValueType>
::~MultiGradientOptimizerv4Template()
{
}

//-------------------------------------------------------------------
template<typename TInternalComputationValueType>
void
MultiGradientOptimizerv4Template<TInternalComputationValueType>
::PrintSelf(std::ostream & os, Indent indent) const
{
  Superclass::PrintSelf(os, indent);
  os << indent << "Number of iterations: " << this->m_NumberOfIterations  << std::endl;
  os << indent << "Current iteration: " << this->m_CurrentIteration << std::endl;
  os << indent << "Stop condition:"<< this->m_StopCondition << std::endl;
  os << indent << "Stop condition description: " << this->m_StopConditionDescription.str()  << std::endl;
  }

//-------------------------------------------------------------------
template<typename TInternalComputationValueType>
typename MultiGradientOptimizerv4Template<TInternalComputationValueType>::OptimizersListType &
MultiGradientOptimizerv4Template<TInternalComputationValueType>
::GetOptimizersList()
{
  return this->m_OptimizersList;
  }

/** Set the list of optimizers to use in the multiple gradient descent */
template<typename TInternalComputationValueType>
void
MultiGradientOptimizerv4Template<TInternalComputationValueType>
::SetOptimizersList(typename MultiGradientOptimizerv4Template::OptimizersListType & p)
{
  if( p != this->m_OptimizersList )
    {
    this->m_OptimizersList = p;
    this->Modified();
    }
  }

/** Get the list of metric values that we produced after the multi-gradient optimization.  */
template<typename TInternalComputationValueType>
const typename MultiGradientOptimizerv4Template<TInternalComputationValueType>::MetricValuesListType &
MultiGradientOptimizerv4Template<TInternalComputationValueType>
::GetMetricValuesList() const
{
  return this->m_MetricValuesList;
  }

//-------------------------------------------------------------------
template<typename TInternalComputationValueType>
const typename MultiGradientOptimizerv4Template<TInternalComputationValueType>::StopConditionReturnStringType
MultiGradientOptimizerv4Template<TInternalComputationValueType>
::GetStopConditionDescription() const
{
  return this->m_StopConditionDescription.str();
  }

//-------------------------------------------------------------------
template<typename TInternalComputationValueType>
void
MultiGradientOptimizerv4Template<TInternalComputationValueType>
::StopOptimization(void)
{
  itkDebugMacro( "StopOptimization called with a description - "
                << this->GetStopConditionDescription() );
  this->m_Stop = true;

    // FIXME
    // this->m_Metric->SetParameters( this->m_OptimizersList[ this->m_BestParametersIndex ] );
  this->InvokeEvent( EndEvent() );
  }

/**
* Start and run the optimization
*/
template<typename TInternalComputationValueType>
void
MultiGradientOptimizerv4Template<TInternalComputationValueType>
::StartOptimization( bool doOnlyInitialization )
{
  itkDebugMacro("StartOptimization");
  SizeValueType maxOpt=this->m_OptimizersList.size();
  if ( maxOpt == NumericTraits<SizeValueType>::Zero )
    {
    itkExceptionMacro(" No optimizers are set.");
    }
  if ( ! this->m_Metric )
    {
    this->m_Metric = this->m_OptimizersList[0]->GetModifiableMetric();
    }
  this->m_MetricValuesList.clear();
  this->m_MinimumMetricValue = this->m_MaximumMetricValue;
  const ParametersType & testParamsAreTheSameObject = this->m_OptimizersList[0]->GetCurrentPosition();
  this->m_MetricValuesList.push_back( this->m_MaximumMetricValue );
  /* Initialize the optimizer, but don't run it. */
  this->m_OptimizersList[0]->StartOptimization( true /* doOnlyInitialization */ );

  for ( SizeValueType whichOptimizer = 1; whichOptimizer < maxOpt; whichOptimizer++ )
    {
    this->m_MetricValuesList.push_back(this->m_MaximumMetricValue);
    const ParametersType & compareParams = this->m_OptimizersList[whichOptimizer]->GetCurrentPosition();
    if ( &compareParams != &testParamsAreTheSameObject )
      {
      itkExceptionMacro(" Parameter objects are not identical across all optimizers/metrics.");
      }
    /* Initialize the optimizer, but don't run it. */
    this->m_OptimizersList[whichOptimizer]->StartOptimization( true /* doOnlyInitialization */ );
    }

  this->m_CurrentIteration = static_cast<SizeValueType>(0);

  /* Must call the superclass version for basic validation and setup,
   * and to start the optimization loop. */
  if ( this->m_NumberOfIterations > static_cast<SizeValueType>(0) )
    {
    Superclass::StartOptimization( doOnlyInitialization );
    }
  }

/**
* Resume optimization.
*/
template<typename TInternalComputationValueType>
void
MultiGradientOptimizerv4Template<TInternalComputationValueType>
::ResumeOptimization()
{
  this->m_StopConditionDescription.str("");
  this->m_StopConditionDescription << this->GetNameOfClass() << ": ";
  this->InvokeEvent( StartEvent() );
  itkDebugMacro(" start ");
  this->m_Stop = false;
  while( ! this->m_Stop )
    {
    /* Compute metric value/derivative. */

    SizeValueType maxOpt = this->m_OptimizersList.size();
    /** we rely on learning rate or parameter scale estimator to do the weighting */
    TInternalComputationValueType combinefunction = NumericTraits<TInternalComputationValueType>::OneValue() / static_cast<TInternalComputationValueType>(maxOpt);
    itkDebugMacro(" nopt " << maxOpt);

    for (SizeValueType whichOptimizer = 0; whichOptimizer < maxOpt; whichOptimizer++ )
      {
      this->m_OptimizersList[whichOptimizer]->GetMetric()->GetValueAndDerivative(
                                                                                 const_cast<MeasureType&>( this->m_OptimizersList[whichOptimizer]->GetCurrentMetricValue() ),
                                                                                 const_cast<DerivativeType&>( this->m_OptimizersList[whichOptimizer]->GetGradient() ) );
      itkDebugMacro(" got-deriv " << whichOptimizer);
      if ( this->m_Gradient.Size() != this->m_OptimizersList[whichOptimizer]->GetGradient().Size() )
        {
        this->m_Gradient.SetSize( this->m_OptimizersList[whichOptimizer]->GetGradient().Size() );
        itkDebugMacro(" resized ");
        }

      /* Modify the gradient by scales, weights and learning rate */
      this->m_OptimizersList[whichOptimizer]->ModifyGradientByScales();
      this->m_OptimizersList[whichOptimizer]->EstimateLearningRate();
      this->m_OptimizersList[whichOptimizer]->ModifyGradientByLearningRate();

      itkDebugMacro(" mod-grad ");
      /** combine the gradients */
      if ( whichOptimizer == 0 )
        {
        this->m_Gradient.Fill(0);
        }
      this->m_Gradient = this->m_Gradient + this->m_OptimizersList[whichOptimizer]->GetGradient() * combinefunction;
      itkDebugMacro(" add-grad ");
      this->m_MetricValuesList[whichOptimizer] = this->m_OptimizersList[whichOptimizer]->GetCurrentMetricValue();
      }//endfor

    /* Check if optimization has been stopped externally.
     * (Presumably this could happen from a multi-threaded client app?) */
    if ( this->m_Stop )
      {
      this->m_StopConditionDescription << "StopOptimization() called";
      break;
      }
    try
      {
      /* Pass combined gradient to transforms and let them update */
      itkDebugMacro(" combine-grad ");
      this->m_OptimizersList[0]->GetModifiableMetric()->UpdateTransformParameters( this->m_Gradient );
      }
    catch ( ExceptionObject & err )
      {
      this->m_StopCondition = Superclass::UPDATE_PARAMETERS_ERROR;
      this->m_StopConditionDescription << "UpdateTransformParameters error";
      this->StopOptimization();
        // Pass exception to caller
      throw err;
      }
    this->InvokeEvent( IterationEvent() );
    /* Update and check iteration count */
    this->m_CurrentIteration++;
    if ( this->m_CurrentIteration >= this->m_NumberOfIterations )
      {
      this->m_StopConditionDescription << "Maximum number of iterations (" << this->m_NumberOfIterations << ") exceeded.";
      this->m_StopCondition = Superclass::MAXIMUM_NUMBER_OF_ITERATIONS;
      this->StopOptimization();
      break;
      }
    }  //while (!m_Stop)
  }

} //namespace itk

#endif