/usr/include/ITK-4.5/itkMultiGradientOptimizerv4.hxx is in libinsighttoolkit4-dev 4.5.0-3.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 | /*=========================================================================
*
* Copyright Insight Software Consortium
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0.txt
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
*=========================================================================*/
#ifndef __itkMultiGradientOptimizerv4_hxx
#define __itkMultiGradientOptimizerv4_hxx
#include "itkMultiGradientOptimizerv4.h"
namespace itk
{
//-------------------------------------------------------------------
template<typename TInternalComputationValueType>
MultiGradientOptimizerv4Template<TInternalComputationValueType>
::MultiGradientOptimizerv4Template()
{
this->m_NumberOfIterations = static_cast<SizeValueType>(0);
this->m_CurrentIteration = static_cast<SizeValueType>(0);
this->m_StopCondition = Superclass::MAXIMUM_NUMBER_OF_ITERATIONS;
this->m_StopConditionDescription << this->GetNameOfClass() << ": ";
this->m_MaximumMetricValue=NumericTraits<MeasureType>::max();
this->m_MinimumMetricValue = this->m_MaximumMetricValue;
}
//-------------------------------------------------------------------
template<typename TInternalComputationValueType>
MultiGradientOptimizerv4Template<TInternalComputationValueType>
::~MultiGradientOptimizerv4Template()
{
}
//-------------------------------------------------------------------
template<typename TInternalComputationValueType>
void
MultiGradientOptimizerv4Template<TInternalComputationValueType>
::PrintSelf(std::ostream & os, Indent indent) const
{
Superclass::PrintSelf(os, indent);
os << indent << "Number of iterations: " << this->m_NumberOfIterations << std::endl;
os << indent << "Current iteration: " << this->m_CurrentIteration << std::endl;
os << indent << "Stop condition:"<< this->m_StopCondition << std::endl;
os << indent << "Stop condition description: " << this->m_StopConditionDescription.str() << std::endl;
}
//-------------------------------------------------------------------
template<typename TInternalComputationValueType>
typename MultiGradientOptimizerv4Template<TInternalComputationValueType>::OptimizersListType &
MultiGradientOptimizerv4Template<TInternalComputationValueType>
::GetOptimizersList()
{
return this->m_OptimizersList;
}
/** Set the list of optimizers to use in the multiple gradient descent */
template<typename TInternalComputationValueType>
void
MultiGradientOptimizerv4Template<TInternalComputationValueType>
::SetOptimizersList(typename MultiGradientOptimizerv4Template::OptimizersListType & p)
{
if( p != this->m_OptimizersList )
{
this->m_OptimizersList = p;
this->Modified();
}
}
/** Get the list of metric values that we produced after the multi-gradient optimization. */
template<typename TInternalComputationValueType>
const typename MultiGradientOptimizerv4Template<TInternalComputationValueType>::MetricValuesListType &
MultiGradientOptimizerv4Template<TInternalComputationValueType>
::GetMetricValuesList() const
{
return this->m_MetricValuesList;
}
//-------------------------------------------------------------------
template<typename TInternalComputationValueType>
const typename MultiGradientOptimizerv4Template<TInternalComputationValueType>::StopConditionReturnStringType
MultiGradientOptimizerv4Template<TInternalComputationValueType>
::GetStopConditionDescription() const
{
return this->m_StopConditionDescription.str();
}
//-------------------------------------------------------------------
template<typename TInternalComputationValueType>
void
MultiGradientOptimizerv4Template<TInternalComputationValueType>
::StopOptimization(void)
{
itkDebugMacro( "StopOptimization called with a description - "
<< this->GetStopConditionDescription() );
this->m_Stop = true;
// FIXME
// this->m_Metric->SetParameters( this->m_OptimizersList[ this->m_BestParametersIndex ] );
this->InvokeEvent( EndEvent() );
}
/**
* Start and run the optimization
*/
template<typename TInternalComputationValueType>
void
MultiGradientOptimizerv4Template<TInternalComputationValueType>
::StartOptimization( bool doOnlyInitialization )
{
itkDebugMacro("StartOptimization");
SizeValueType maxOpt=this->m_OptimizersList.size();
if ( maxOpt == NumericTraits<SizeValueType>::Zero )
{
itkExceptionMacro(" No optimizers are set.");
}
if ( ! this->m_Metric )
{
this->m_Metric = this->m_OptimizersList[0]->GetModifiableMetric();
}
this->m_MetricValuesList.clear();
this->m_MinimumMetricValue = this->m_MaximumMetricValue;
const ParametersType & testParamsAreTheSameObject = this->m_OptimizersList[0]->GetCurrentPosition();
this->m_MetricValuesList.push_back( this->m_MaximumMetricValue );
/* Initialize the optimizer, but don't run it. */
this->m_OptimizersList[0]->StartOptimization( true /* doOnlyInitialization */ );
for ( SizeValueType whichOptimizer = 1; whichOptimizer < maxOpt; whichOptimizer++ )
{
this->m_MetricValuesList.push_back(this->m_MaximumMetricValue);
const ParametersType & compareParams = this->m_OptimizersList[whichOptimizer]->GetCurrentPosition();
if ( &compareParams != &testParamsAreTheSameObject )
{
itkExceptionMacro(" Parameter objects are not identical across all optimizers/metrics.");
}
/* Initialize the optimizer, but don't run it. */
this->m_OptimizersList[whichOptimizer]->StartOptimization( true /* doOnlyInitialization */ );
}
this->m_CurrentIteration = static_cast<SizeValueType>(0);
/* Must call the superclass version for basic validation and setup,
* and to start the optimization loop. */
if ( this->m_NumberOfIterations > static_cast<SizeValueType>(0) )
{
Superclass::StartOptimization( doOnlyInitialization );
}
}
/**
* Resume optimization.
*/
template<typename TInternalComputationValueType>
void
MultiGradientOptimizerv4Template<TInternalComputationValueType>
::ResumeOptimization()
{
this->m_StopConditionDescription.str("");
this->m_StopConditionDescription << this->GetNameOfClass() << ": ";
this->InvokeEvent( StartEvent() );
itkDebugMacro(" start ");
this->m_Stop = false;
while( ! this->m_Stop )
{
/* Compute metric value/derivative. */
SizeValueType maxOpt = this->m_OptimizersList.size();
/** we rely on learning rate or parameter scale estimator to do the weighting */
TInternalComputationValueType combinefunction = NumericTraits<TInternalComputationValueType>::OneValue() / static_cast<TInternalComputationValueType>(maxOpt);
itkDebugMacro(" nopt " << maxOpt);
for (SizeValueType whichOptimizer = 0; whichOptimizer < maxOpt; whichOptimizer++ )
{
this->m_OptimizersList[whichOptimizer]->GetMetric()->GetValueAndDerivative(
const_cast<MeasureType&>( this->m_OptimizersList[whichOptimizer]->GetCurrentMetricValue() ),
const_cast<DerivativeType&>( this->m_OptimizersList[whichOptimizer]->GetGradient() ) );
itkDebugMacro(" got-deriv " << whichOptimizer);
if ( this->m_Gradient.Size() != this->m_OptimizersList[whichOptimizer]->GetGradient().Size() )
{
this->m_Gradient.SetSize( this->m_OptimizersList[whichOptimizer]->GetGradient().Size() );
itkDebugMacro(" resized ");
}
/* Modify the gradient by scales, weights and learning rate */
this->m_OptimizersList[whichOptimizer]->ModifyGradientByScales();
this->m_OptimizersList[whichOptimizer]->EstimateLearningRate();
this->m_OptimizersList[whichOptimizer]->ModifyGradientByLearningRate();
itkDebugMacro(" mod-grad ");
/** combine the gradients */
if ( whichOptimizer == 0 )
{
this->m_Gradient.Fill(0);
}
this->m_Gradient = this->m_Gradient + this->m_OptimizersList[whichOptimizer]->GetGradient() * combinefunction;
itkDebugMacro(" add-grad ");
this->m_MetricValuesList[whichOptimizer] = this->m_OptimizersList[whichOptimizer]->GetCurrentMetricValue();
}//endfor
/* Check if optimization has been stopped externally.
* (Presumably this could happen from a multi-threaded client app?) */
if ( this->m_Stop )
{
this->m_StopConditionDescription << "StopOptimization() called";
break;
}
try
{
/* Pass combined gradient to transforms and let them update */
itkDebugMacro(" combine-grad ");
this->m_OptimizersList[0]->GetModifiableMetric()->UpdateTransformParameters( this->m_Gradient );
}
catch ( ExceptionObject & err )
{
this->m_StopCondition = Superclass::UPDATE_PARAMETERS_ERROR;
this->m_StopConditionDescription << "UpdateTransformParameters error";
this->StopOptimization();
// Pass exception to caller
throw err;
}
this->InvokeEvent( IterationEvent() );
/* Update and check iteration count */
this->m_CurrentIteration++;
if ( this->m_CurrentIteration >= this->m_NumberOfIterations )
{
this->m_StopConditionDescription << "Maximum number of iterations (" << this->m_NumberOfIterations << ") exceeded.";
this->m_StopCondition = Superclass::MAXIMUM_NUMBER_OF_ITERATIONS;
this->StopOptimization();
break;
}
} //while (!m_Stop)
}
} //namespace itk
#endif
|