This file is indexed.

/usr/include/ITK-4.5/itkMultilayerNeuralNetworkBase.hxx is in libinsighttoolkit4-dev 4.5.0-3.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
/*=========================================================================
 *
 *  Copyright Insight Software Consortium
 *
 *  Licensed under the Apache License, Version 2.0 (the "License");
 *  you may not use this file except in compliance with the License.
 *  You may obtain a copy of the License at
 *
 *         http://www.apache.org/licenses/LICENSE-2.0.txt
 *
 *  Unless required by applicable law or agreed to in writing, software
 *  distributed under the License is distributed on an "AS IS" BASIS,
 *  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 *  See the License for the specific language governing permissions and
 *  limitations under the License.
 *
 *=========================================================================*/
#ifndef __itkMultilayerNeuralNetworkBase_hxx
#define __itkMultilayerNeuralNetworkBase_hxx

#include "itkMultilayerNeuralNetworkBase.h"
#include "itkErrorBackPropagationLearningFunctionBase.h"
#include "itkErrorBackPropagationLearningWithMomentum.h"
#include "itkQuickPropLearningRule.h"

namespace itk
{
namespace Statistics
{
template<typename TMeasurementVector, typename TTargetVector,typename TLearningLayer>
MultilayerNeuralNetworkBase<TMeasurementVector,TTargetVector,TLearningLayer>
::MultilayerNeuralNetworkBase()
{
  typedef ErrorBackPropagationLearningWithMomentum<TLearningLayer,TTargetVector> DefaultLearningFunctionType;
  m_LearningFunction = DefaultLearningFunctionType::New();
  m_LearningRate = 0.001;
  //#define __USE_OLD_INTERFACE  Comment out to ensure that new interface works
#ifdef __USE_OLD_INTERFACE
  m_NumOfLayers = 0;
  m_NumOfWeightSets=0;
#endif
}

template<typename TMeasurementVector, typename TTargetVector,typename TLearningLayer>
void
MultilayerNeuralNetworkBase<TMeasurementVector,TTargetVector,TLearningLayer>
::SetLearningRate(ValueType lr)
{
  m_LearningRate=lr;
  this->Modified();
}

template<typename TMeasurementVector, typename TTargetVector,typename TLearningLayer>
void
MultilayerNeuralNetworkBase<TMeasurementVector,TTargetVector,TLearningLayer>
::SetLearningFunction(LearningFunctionInterfaceType* f)
{
  m_LearningFunction=f;
  this->Modified();
}


template<typename TMeasurementVector, typename TTargetVector,typename TLearningLayer>
MultilayerNeuralNetworkBase<TMeasurementVector,TTargetVector,TLearningLayer>
::~MultilayerNeuralNetworkBase()
{
}

template<typename TMeasurementVector, typename TTargetVector,typename TLearningLayer>
void
MultilayerNeuralNetworkBase<TMeasurementVector,TTargetVector,TLearningLayer>
::AddLayer(LayerInterfaceType* layer)
{
  //Automatically set the layer Id based on position in the layer vector.
  layer->SetLayerId(m_Layers.size());
  m_Layers.push_back(layer);
//#define __USE_OLD_INTERFACE  Comment out to ensure that new interface works
#ifdef __USE_OLD_INTERFACE
  m_NumOfLayers++;
#endif
}

template<typename TMeasurementVector, typename TTargetVector,typename TLearningLayer>
typename MultilayerNeuralNetworkBase<TMeasurementVector,TTargetVector,TLearningLayer>::LayerInterfaceType*
MultilayerNeuralNetworkBase<TMeasurementVector,TTargetVector,TLearningLayer>
::GetLayer(int layer_id)
{
  return m_Layers[layer_id].GetPointer();
}


template<typename TMeasurementVector, typename TTargetVector,typename TLearningLayer>
const typename MultilayerNeuralNetworkBase<TMeasurementVector,TTargetVector,TLearningLayer>::LayerInterfaceType*
MultilayerNeuralNetworkBase<TMeasurementVector,TTargetVector,TLearningLayer>
::GetLayer(int layer_id) const
{
  return m_Layers[layer_id].GetPointer();
}

template<typename TMeasurementVector, typename TTargetVector,typename TLearningLayer>
typename MultilayerNeuralNetworkBase<TMeasurementVector,TTargetVector,TLearningLayer>::NetworkOutputType
MultilayerNeuralNetworkBase<TMeasurementVector,TTargetVector,TLearningLayer>
::GenerateOutput(TMeasurementVector samplevector)
{
  this->m_Layers[0]->ForwardPropagate(samplevector);
  unsigned int i;
  for (i = 0; i < this->m_Layers.size() && i < this->m_Weights.size(); i++)
    {
    this->m_Weights[i]->ForwardPropagate(
      this->m_Layers[i]->GetOutputVector() );

    this->m_Layers[i + 1]->ForwardPropagate();
    }
  NetworkOutputType temp_output;
  temp_output.SetSize(this->m_Layers[i]->GetNumberOfNodes());
  for(unsigned int k=0; k<temp_output.Size(); k++)
    {
    temp_output[k]=this->m_Layers[i]->GetOutputVector()[k];
    }
  return temp_output;
}

template<typename TMeasurementVector, typename TTargetVector,typename TLearningLayer>
void
MultilayerNeuralNetworkBase<TMeasurementVector,TTargetVector,TLearningLayer>
::BackwardPropagate(NetworkOutputType errors)
{
  unsigned int i = this->m_Layers.size();
  i--;
  this->m_Layers[i]->BackwardPropagate(errors);
  i--;
  while (i > 0)
    {
    this->m_Layers[i]->BackwardPropagate();
    i--;
    }
}

template<typename TMeasurementVector, typename TTargetVector,typename TLearningLayer>
void
MultilayerNeuralNetworkBase<TMeasurementVector,TTargetVector,TLearningLayer>
::InitializeWeights()
{
  unsigned int num_wts = this->m_Weights.size();
  for(unsigned int i=0; i<num_wts; i++)
    {
    this->m_Weights[i]->InitializeWeights();
    }
}

template<typename TMeasurementVector, typename TTargetVector,typename TLearningLayer>
void
MultilayerNeuralNetworkBase<TMeasurementVector,TTargetVector,TLearningLayer>
::UpdateWeights(ValueType itkNotUsed(lr))
{
  unsigned int i = this->m_Layers.size();
  while(i>1)
    {
    i--;
    m_LearningFunction->Learn(this->m_Layers[i],m_LearningRate);
    this->m_Layers[i]->GetModifiableInputWeightSet()->UpdateWeights(m_LearningRate);
    }
}

template<typename TMeasurementVector, typename TTargetVector,typename TLearningLayer>
void
MultilayerNeuralNetworkBase<TMeasurementVector,TTargetVector,TLearningLayer>
::AddWeightSet(typename LayerInterfaceType::WeightSetInterfaceType* weightset)
{
  weightset->SetWeightSetId(m_Weights.size());
  m_Weights.push_back(weightset);
  //#define __USE_OLD_INTERFACE  Comment out to ensure that new interface works
#ifdef __USE_OLD_INTERFACE
  m_NumOfWeightSets++;
#endif
}

#ifdef __USE_OLD_INTERFACE
//Moved definition to header in attempt to fix compiler issues on MS Express 5.0 compiler.
template<typename TMeasurementVector, typename TTargetVector,typename TLearningLayer>
typename MultilayerNeuralNetworkBase<TMeasurementVector,TTargetVector,TLearningLayer>::LayerInterfaceType::WeightSetInterfaceType*
MultilayerNeuralNetworkBase<TMeasurementVector,TTargetVector,TLearningLayer>
::GetWeightSet(unsigned int id)
{
  return m_Weights[id].GetPointer();
}
#endif

#ifdef __USE_OLD_INTERFACE
template<typename TMeasurementVector, typename TTargetVector,typename TLearningLayer>
const typename MultilayerNeuralNetworkBase<TMeasurementVector,TTargetVector,TLearningLayer>::LayerInterfaceType::WeightSetInterfaceType*
MultilayerNeuralNetworkBase<TMeasurementVector,TTargetVector,TLearningLayer>
::GetWeightSet(unsigned int id) const
{
  return m_Weights[id].GetPointer();
}
#endif


template<typename TMeasurementVector, typename TTargetVector,typename TLearningLayer>
void
MultilayerNeuralNetworkBase<TMeasurementVector,TTargetVector,TLearningLayer>
::SetLearningRule(LearningFunctionInterfaceType* l)
{
  m_LearningFunction = l;
  this->Modified();
}

/** Print the object */
template<typename TMeasurementVector, typename TTargetVector,typename TLearningLayer>
void
MultilayerNeuralNetworkBase<TMeasurementVector,TTargetVector,TLearningLayer>
::PrintSelf( std::ostream& os, Indent indent ) const
{
  os << indent << "MultilayerNeuralNetworkBase(" << this << ")" << std::endl;
  Superclass::PrintSelf( os, indent );
  //os << indent << "m_Layers = " << m_Layers << std::endl;
  //os << indent << "m_Weights = " << m_Weights << std::endl;
  if(m_LearningFunction)
    {
    os << indent << "m_LearningFunction = " << m_LearningFunction << std::endl;
    }
  os << indent << "m_LearningRate = " << m_LearningRate << std::endl;
  os << indent << "NumOfLayers = " << m_Layers.size() << std::endl;
  os << indent << "NumOfWeightSets = " << m_Weights.size() << std::endl;
}

} // end namespace Statistics
} // end namespace itk

#endif