/usr/include/ITK-4.5/itkMultilayerNeuralNetworkBase.hxx is in libinsighttoolkit4-dev 4.5.0-3.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 | /*=========================================================================
*
* Copyright Insight Software Consortium
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0.txt
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
*=========================================================================*/
#ifndef __itkMultilayerNeuralNetworkBase_hxx
#define __itkMultilayerNeuralNetworkBase_hxx
#include "itkMultilayerNeuralNetworkBase.h"
#include "itkErrorBackPropagationLearningFunctionBase.h"
#include "itkErrorBackPropagationLearningWithMomentum.h"
#include "itkQuickPropLearningRule.h"
namespace itk
{
namespace Statistics
{
template<typename TMeasurementVector, typename TTargetVector,typename TLearningLayer>
MultilayerNeuralNetworkBase<TMeasurementVector,TTargetVector,TLearningLayer>
::MultilayerNeuralNetworkBase()
{
typedef ErrorBackPropagationLearningWithMomentum<TLearningLayer,TTargetVector> DefaultLearningFunctionType;
m_LearningFunction = DefaultLearningFunctionType::New();
m_LearningRate = 0.001;
//#define __USE_OLD_INTERFACE Comment out to ensure that new interface works
#ifdef __USE_OLD_INTERFACE
m_NumOfLayers = 0;
m_NumOfWeightSets=0;
#endif
}
template<typename TMeasurementVector, typename TTargetVector,typename TLearningLayer>
void
MultilayerNeuralNetworkBase<TMeasurementVector,TTargetVector,TLearningLayer>
::SetLearningRate(ValueType lr)
{
m_LearningRate=lr;
this->Modified();
}
template<typename TMeasurementVector, typename TTargetVector,typename TLearningLayer>
void
MultilayerNeuralNetworkBase<TMeasurementVector,TTargetVector,TLearningLayer>
::SetLearningFunction(LearningFunctionInterfaceType* f)
{
m_LearningFunction=f;
this->Modified();
}
template<typename TMeasurementVector, typename TTargetVector,typename TLearningLayer>
MultilayerNeuralNetworkBase<TMeasurementVector,TTargetVector,TLearningLayer>
::~MultilayerNeuralNetworkBase()
{
}
template<typename TMeasurementVector, typename TTargetVector,typename TLearningLayer>
void
MultilayerNeuralNetworkBase<TMeasurementVector,TTargetVector,TLearningLayer>
::AddLayer(LayerInterfaceType* layer)
{
//Automatically set the layer Id based on position in the layer vector.
layer->SetLayerId(m_Layers.size());
m_Layers.push_back(layer);
//#define __USE_OLD_INTERFACE Comment out to ensure that new interface works
#ifdef __USE_OLD_INTERFACE
m_NumOfLayers++;
#endif
}
template<typename TMeasurementVector, typename TTargetVector,typename TLearningLayer>
typename MultilayerNeuralNetworkBase<TMeasurementVector,TTargetVector,TLearningLayer>::LayerInterfaceType*
MultilayerNeuralNetworkBase<TMeasurementVector,TTargetVector,TLearningLayer>
::GetLayer(int layer_id)
{
return m_Layers[layer_id].GetPointer();
}
template<typename TMeasurementVector, typename TTargetVector,typename TLearningLayer>
const typename MultilayerNeuralNetworkBase<TMeasurementVector,TTargetVector,TLearningLayer>::LayerInterfaceType*
MultilayerNeuralNetworkBase<TMeasurementVector,TTargetVector,TLearningLayer>
::GetLayer(int layer_id) const
{
return m_Layers[layer_id].GetPointer();
}
template<typename TMeasurementVector, typename TTargetVector,typename TLearningLayer>
typename MultilayerNeuralNetworkBase<TMeasurementVector,TTargetVector,TLearningLayer>::NetworkOutputType
MultilayerNeuralNetworkBase<TMeasurementVector,TTargetVector,TLearningLayer>
::GenerateOutput(TMeasurementVector samplevector)
{
this->m_Layers[0]->ForwardPropagate(samplevector);
unsigned int i;
for (i = 0; i < this->m_Layers.size() && i < this->m_Weights.size(); i++)
{
this->m_Weights[i]->ForwardPropagate(
this->m_Layers[i]->GetOutputVector() );
this->m_Layers[i + 1]->ForwardPropagate();
}
NetworkOutputType temp_output;
temp_output.SetSize(this->m_Layers[i]->GetNumberOfNodes());
for(unsigned int k=0; k<temp_output.Size(); k++)
{
temp_output[k]=this->m_Layers[i]->GetOutputVector()[k];
}
return temp_output;
}
template<typename TMeasurementVector, typename TTargetVector,typename TLearningLayer>
void
MultilayerNeuralNetworkBase<TMeasurementVector,TTargetVector,TLearningLayer>
::BackwardPropagate(NetworkOutputType errors)
{
unsigned int i = this->m_Layers.size();
i--;
this->m_Layers[i]->BackwardPropagate(errors);
i--;
while (i > 0)
{
this->m_Layers[i]->BackwardPropagate();
i--;
}
}
template<typename TMeasurementVector, typename TTargetVector,typename TLearningLayer>
void
MultilayerNeuralNetworkBase<TMeasurementVector,TTargetVector,TLearningLayer>
::InitializeWeights()
{
unsigned int num_wts = this->m_Weights.size();
for(unsigned int i=0; i<num_wts; i++)
{
this->m_Weights[i]->InitializeWeights();
}
}
template<typename TMeasurementVector, typename TTargetVector,typename TLearningLayer>
void
MultilayerNeuralNetworkBase<TMeasurementVector,TTargetVector,TLearningLayer>
::UpdateWeights(ValueType itkNotUsed(lr))
{
unsigned int i = this->m_Layers.size();
while(i>1)
{
i--;
m_LearningFunction->Learn(this->m_Layers[i],m_LearningRate);
this->m_Layers[i]->GetModifiableInputWeightSet()->UpdateWeights(m_LearningRate);
}
}
template<typename TMeasurementVector, typename TTargetVector,typename TLearningLayer>
void
MultilayerNeuralNetworkBase<TMeasurementVector,TTargetVector,TLearningLayer>
::AddWeightSet(typename LayerInterfaceType::WeightSetInterfaceType* weightset)
{
weightset->SetWeightSetId(m_Weights.size());
m_Weights.push_back(weightset);
//#define __USE_OLD_INTERFACE Comment out to ensure that new interface works
#ifdef __USE_OLD_INTERFACE
m_NumOfWeightSets++;
#endif
}
#ifdef __USE_OLD_INTERFACE
//Moved definition to header in attempt to fix compiler issues on MS Express 5.0 compiler.
template<typename TMeasurementVector, typename TTargetVector,typename TLearningLayer>
typename MultilayerNeuralNetworkBase<TMeasurementVector,TTargetVector,TLearningLayer>::LayerInterfaceType::WeightSetInterfaceType*
MultilayerNeuralNetworkBase<TMeasurementVector,TTargetVector,TLearningLayer>
::GetWeightSet(unsigned int id)
{
return m_Weights[id].GetPointer();
}
#endif
#ifdef __USE_OLD_INTERFACE
template<typename TMeasurementVector, typename TTargetVector,typename TLearningLayer>
const typename MultilayerNeuralNetworkBase<TMeasurementVector,TTargetVector,TLearningLayer>::LayerInterfaceType::WeightSetInterfaceType*
MultilayerNeuralNetworkBase<TMeasurementVector,TTargetVector,TLearningLayer>
::GetWeightSet(unsigned int id) const
{
return m_Weights[id].GetPointer();
}
#endif
template<typename TMeasurementVector, typename TTargetVector,typename TLearningLayer>
void
MultilayerNeuralNetworkBase<TMeasurementVector,TTargetVector,TLearningLayer>
::SetLearningRule(LearningFunctionInterfaceType* l)
{
m_LearningFunction = l;
this->Modified();
}
/** Print the object */
template<typename TMeasurementVector, typename TTargetVector,typename TLearningLayer>
void
MultilayerNeuralNetworkBase<TMeasurementVector,TTargetVector,TLearningLayer>
::PrintSelf( std::ostream& os, Indent indent ) const
{
os << indent << "MultilayerNeuralNetworkBase(" << this << ")" << std::endl;
Superclass::PrintSelf( os, indent );
//os << indent << "m_Layers = " << m_Layers << std::endl;
//os << indent << "m_Weights = " << m_Weights << std::endl;
if(m_LearningFunction)
{
os << indent << "m_LearningFunction = " << m_LearningFunction << std::endl;
}
os << indent << "m_LearningRate = " << m_LearningRate << std::endl;
os << indent << "NumOfLayers = " << m_Layers.size() << std::endl;
os << indent << "NumOfWeightSets = " << m_Weights.size() << std::endl;
}
} // end namespace Statistics
} // end namespace itk
#endif
|