This file is indexed.

/usr/include/ITK-4.5/itkMutualInformationImageToImageMetric.hxx is in libinsighttoolkit4-dev 4.5.0-3.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
/*=========================================================================
 *
 *  Copyright Insight Software Consortium
 *
 *  Licensed under the Apache License, Version 2.0 (the "License");
 *  you may not use this file except in compliance with the License.
 *  You may obtain a copy of the License at
 *
 *         http://www.apache.org/licenses/LICENSE-2.0.txt
 *
 *  Unless required by applicable law or agreed to in writing, software
 *  distributed under the License is distributed on an "AS IS" BASIS,
 *  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 *  See the License for the specific language governing permissions and
 *  limitations under the License.
 *
 *=========================================================================*/
#ifndef __itkMutualInformationImageToImageMetric_hxx
#define __itkMutualInformationImageToImageMetric_hxx

#include "itkMutualInformationImageToImageMetric.h"
#include "itkImageRandomConstIteratorWithIndex.h"
#include "vnl/vnl_math.h"
#include "itkGaussianKernelFunction.h"
#include "itkCompensatedSummation.h"

namespace itk
{
/**
 * Constructor
 */
template <typename TFixedImage, typename TMovingImage>
MutualInformationImageToImageMetric<TFixedImage, TMovingImage>
::MutualInformationImageToImageMetric()
{
  m_NumberOfSpatialSamples = 0;
  this->SetNumberOfSpatialSamples(50);

  m_KernelFunction  = dynamic_cast<KernelFunctionType *>(
      GaussianKernelFunction<double>::New().GetPointer() );

  m_FixedImageStandardDeviation = 0.4;
  m_MovingImageStandardDeviation = 0.4;

  m_MinProbability = 0.0001;

  //
  // Following initialization is related to
  // calculating image derivatives
  this->SetComputeGradient(false); // don't use the default gradient for now
  m_DerivativeCalculator = DerivativeFunctionType::New();
  m_DerivativeCalculator->UseImageDirectionOn();
}

template <typename TFixedImage, typename TMovingImage>
void
MutualInformationImageToImageMetric<TFixedImage, TMovingImage>
::PrintSelf(std::ostream & os, Indent indent) const
{
  Superclass::PrintSelf(os, indent);
  os << indent << "NumberOfSpatialSamples: ";
  os << m_NumberOfSpatialSamples << std::endl;
  os << indent << "FixedImageStandardDeviation: ";
  os << m_FixedImageStandardDeviation << std::endl;
  os << indent << "MovingImageStandardDeviation: ";
  os << m_MovingImageStandardDeviation << std::endl;
  os << indent << "KernelFunction: ";
  os << m_KernelFunction.GetPointer() << std::endl;
}

/*
 * Set the number of spatial samples
 */
template <typename TFixedImage, typename TMovingImage>
void
MutualInformationImageToImageMetric<TFixedImage, TMovingImage>
::SetNumberOfSpatialSamples(
  unsigned int num)
{
  if( num == m_NumberOfSpatialSamples )
    {
    return;
    }

  this->Modified();

  // clamp to minimum of 1
  m_NumberOfSpatialSamples = ( ( num > 1 ) ? num : 1 );

  // resize the storage vectors
  m_SampleA.resize(m_NumberOfSpatialSamples);
  m_SampleB.resize(m_NumberOfSpatialSamples);
}

/*
 * Uniformly sample the fixed image domain. Each sample consists of:
 *  - the fixed image value
 *  - the corresponding moving image value
 *
 * \warning Note that this method has a different signature than the one in
 * the base OptImageToImageMetric and therefore they are not intended to
 * provide polymorphism. That is, this function is not overriding the one in
 * the base class.
 *
 */
template <typename TFixedImage, typename TMovingImage>
void
MutualInformationImageToImageMetric<TFixedImage, TMovingImage>
::SampleFixedImageDomain(
  SpatialSampleContainer & samples) const
{
  typedef ImageRandomConstIteratorWithIndex<FixedImageType> RandomIterator;
  RandomIterator randIter( this->m_FixedImage, this->GetFixedImageRegion() );

  randIter.SetNumberOfSamples(m_NumberOfSpatialSamples);
  randIter.GoToBegin();

  typename SpatialSampleContainer::iterator iter;
  typename SpatialSampleContainer::const_iterator end = samples.end();

  bool allOutside = true;

  this->m_NumberOfPixelsCounted = 0;    // Number of pixels that map into the
                                        // fixed and moving image mask, if
                                        // specified
                                        // and the resampled fixed grid after
                                        // transformation.

  // Number of random picks made from the portion of fixed image within the
  // fixed mask
  SizeValueType numberOfFixedImagePixelsVisited = 0;
  SizeValueType dryRunTolerance = this->GetFixedImageRegion().GetNumberOfPixels();
  for( iter = samples.begin(); iter != end; ++iter )
    {
    // Get sampled index
    FixedImageIndexType index = randIter.GetIndex();
    // Get sampled fixed image value
    ( *iter ).FixedImageValue = randIter.Get();
    // Translate index to point
    this->m_FixedImage->TransformIndexToPhysicalPoint(index,
                                                      ( *iter ).FixedImagePointValue);

    // If not inside the fixed mask, ignore the point
    if( this->m_FixedImageMask
        && !this->m_FixedImageMask->IsInside( ( *iter ).FixedImagePointValue ) )
      {
      ++randIter; // jump to another random position
      continue;
      }

    if( allOutside )
      {
      ++numberOfFixedImagePixelsVisited;
      if( numberOfFixedImagePixelsVisited > dryRunTolerance )
        {
        // We randomly visited as many points as is the size of the fixed image
        // region.. Too may samples mapped ouside.. go change your transform
        itkExceptionMacro(<< "Too many samples mapped outside the moving buffer");
        }
      }

    MovingImagePointType mappedPoint =
      this->m_Transform->TransformPoint( ( *iter ).FixedImagePointValue );

    // If the transformed point after transformation does not lie within the
    // MovingImageMask, skip it.
    if( this->m_MovingImageMask
        && !this->m_MovingImageMask->IsInside(mappedPoint) )
      {
      ++randIter;
      continue;
      }

    // The interpolator does not need to do bounds checking if we have masks,
    // since we know that the point is within the fixed and moving masks. But
    // a crazy user can specify masks that are bigger than the image. Then we
    // will need bounds checking.. So keep this anyway.
    if( this->m_Interpolator->IsInsideBuffer(mappedPoint) )
      {
      ( *iter ).MovingImageValue = this->m_Interpolator->Evaluate(mappedPoint);
      this->m_NumberOfPixelsCounted++;
      allOutside = false;
      }
    else
      {
      ( *iter ).MovingImageValue = 0;
      }

    // Jump to random position
    ++randIter;
    }

  if( allOutside )
    {
    // if all the samples mapped to the outside throw an exception
    itkExceptionMacro(<< "All the sampled point mapped to outside of the moving image");
    }
}

/*
 * Get the match Measure
 */
template <typename TFixedImage, typename TMovingImage>
typename MutualInformationImageToImageMetric<TFixedImage, TMovingImage>
::MeasureType
MutualInformationImageToImageMetric<TFixedImage, TMovingImage>
::GetValue(const ParametersType & parameters) const
{
  // make sure the transform has the current parameters
  this->m_Transform->SetParameters(parameters);

  // collect sample set A
  this->SampleFixedImageDomain(m_SampleA);

  // collect sample set B
  this->SampleFixedImageDomain(m_SampleB);

  // calculate the mutual information

  typedef CompensatedSummation< double > SumType;
  SumType dLogSumFixed;
  SumType dLogSumMoving;
  SumType dLogSumJoint;
  SumType dSumFixed;
  SumType dSumMoving;
  SumType dSumJoint;

  typename SpatialSampleContainer::const_iterator aiter;
  typename SpatialSampleContainer::const_iterator aend = m_SampleA.end();
  typename SpatialSampleContainer::const_iterator biter;
  typename SpatialSampleContainer::const_iterator bend = m_SampleB.end();
  for( biter = m_SampleB.begin(); biter != bend; ++biter )
    {
    dSumFixed.ResetToZero();
    dSumMoving.ResetToZero();
    dSumJoint.ResetToZero();
    dSumFixed += m_MinProbability;
    dSumMoving += m_MinProbability;
    dSumJoint += m_MinProbability;
    for( aiter = m_SampleA.begin(); aiter != aend; ++aiter )
      {
      double valueFixed;
      double valueMoving;

      valueFixed = ( ( *biter ).FixedImageValue - ( *aiter ).FixedImageValue )
        / m_FixedImageStandardDeviation;
      valueFixed = m_KernelFunction->Evaluate(valueFixed);

      valueMoving = ( ( *biter ).MovingImageValue - ( *aiter ).MovingImageValue )
        / m_MovingImageStandardDeviation;
      valueMoving = m_KernelFunction->Evaluate(valueMoving);

      dSumFixed += valueFixed;
      dSumMoving += valueMoving;
      dSumJoint += valueFixed * valueMoving;
      } // end of sample A loop

    if( dSumFixed.GetSum() > 0.0 )
      {
      dLogSumFixed -= vcl_log( dSumFixed.GetSum() );
      }
    if( dSumMoving.GetSum() > 0.0 )
      {
      dLogSumMoving -= vcl_log( dSumMoving.GetSum() );
      }
    if( dSumJoint.GetSum() > 0.0 )
      {
      dLogSumJoint -= vcl_log( dSumJoint.GetSum() );
      }
    } // end of sample B loop

  double nsamp   = double(m_NumberOfSpatialSamples);

  double threshold = -0.5 *nsamp *vcl_log(m_MinProbability);
  if( dLogSumMoving.GetSum() > threshold || dLogSumFixed.GetSum() > threshold
      || dLogSumJoint.GetSum() > threshold  )
    {
    // at least half the samples in B did not occur within
    // the Parzen window width of samples in A
    itkExceptionMacro(<< "Standard deviation is too small");
    }

  MeasureType measure = dLogSumFixed.GetSum() + dLogSumMoving.GetSum() - dLogSumJoint.GetSum();
  measure /= nsamp;
  measure += vcl_log(nsamp);

  return measure;
}

/*
 * Get the both Value and Derivative Measure
 */
template <typename TFixedImage, typename TMovingImage>
void
MutualInformationImageToImageMetric<TFixedImage, TMovingImage>
::GetValueAndDerivative(
  const ParametersType & parameters,
  MeasureType & value,
  DerivativeType & derivative) const
{
  value = NumericTraits<MeasureType>::Zero;
  unsigned int   numberOfParameters = this->m_Transform->GetNumberOfParameters();
  DerivativeType temp(numberOfParameters);
  temp.Fill(0);
  derivative = temp;

  // make sure the transform has the current parameters
  this->m_Transform->SetParameters(parameters);

  // set the DerivativeCalculator
  m_DerivativeCalculator->SetInputImage(this->m_MovingImage);

  // collect sample set A
  this->SampleFixedImageDomain(m_SampleA);

  // collect sample set B
  this->SampleFixedImageDomain(m_SampleB);

  // calculate the mutual information
  typedef CompensatedSummation< double > SumType;
  SumType dLogSumFixed;
  SumType dLogSumMoving;
  SumType dLogSumJoint;
  SumType dSumFixed;
  SumType dDenominatorMoving;
  SumType dDenominatorJoint;

  typename SpatialSampleContainer::iterator aiter;
  typename SpatialSampleContainer::const_iterator aend = m_SampleA.end();
  typename SpatialSampleContainer::iterator biter;
  typename SpatialSampleContainer::const_iterator bend = m_SampleB.end();

  // precalculate all the image derivatives for sample A
  typedef std::vector<DerivativeType> DerivativeContainer;
  DerivativeContainer sampleADerivatives;
  sampleADerivatives.resize(m_NumberOfSpatialSamples);

  typename DerivativeContainer::iterator aditer;
  DerivativeType        tempDeriv(numberOfParameters);
  TransformJacobianType jacobian(numberOfParameters, numberOfParameters);
  for( aiter = m_SampleA.begin(), aditer = sampleADerivatives.begin();
       aiter != aend; ++aiter, ++aditer )
    {
    /** FIXME: is there a way to avoid the extra copying step? */
    this->CalculateDerivatives( ( *aiter ).FixedImagePointValue, tempDeriv, jacobian );
    ( *aditer ) = tempDeriv;
    }

  DerivativeType derivB(numberOfParameters);
  for( biter = m_SampleB.begin(); biter != bend; ++biter )
    {
    dDenominatorMoving.ResetToZero();
    dDenominatorMoving += m_MinProbability;
    dDenominatorJoint.ResetToZero();
    dDenominatorJoint += m_MinProbability;
    dSumFixed.ResetToZero();
    dSumFixed += m_MinProbability;
    for( aiter = m_SampleA.begin(); aiter != aend; ++aiter )
      {
      double valueFixed;
      double valueMoving;

      valueFixed = ( ( *biter ).FixedImageValue - ( *aiter ).FixedImageValue )
        / m_FixedImageStandardDeviation;
      valueFixed = m_KernelFunction->Evaluate(valueFixed);

      valueMoving = ( ( *biter ).MovingImageValue - ( *aiter ).MovingImageValue )
        / m_MovingImageStandardDeviation;
      valueMoving = m_KernelFunction->Evaluate(valueMoving);

      dDenominatorMoving += valueMoving;
      dDenominatorJoint += valueMoving * valueFixed;

      dSumFixed += valueFixed;
      } // end of sample A loop

    if( dSumFixed.GetSum() > 0.0 )
      {
      dLogSumFixed -= vcl_log( dSumFixed.GetSum() );
      }
    if( dDenominatorMoving.GetSum() > 0.0 )
      {
      dLogSumMoving -= vcl_log( dDenominatorMoving.GetSum() );
      }
    if( dDenominatorJoint.GetSum() > 0.0 )
      {
      dLogSumJoint -= vcl_log( dDenominatorJoint.GetSum() );
      }

    /** get the image derivative for this B sample */
    this->CalculateDerivatives( ( *biter ).FixedImagePointValue, derivB, jacobian );

    SumType totalWeight;
    for( aiter = m_SampleA.begin(), aditer = sampleADerivatives.begin();
         aiter != aend; ++aiter, ++aditer )
      {
      double valueFixed;
      double valueMoving;
      double weightMoving;
      double weightJoint;
      double weight;

      valueFixed = ( ( *biter ).FixedImageValue - ( *aiter ).FixedImageValue )
        / m_FixedImageStandardDeviation;
      valueFixed = m_KernelFunction->Evaluate(valueFixed);

      valueMoving = ( ( *biter ).MovingImageValue - ( *aiter ).MovingImageValue )
        / m_MovingImageStandardDeviation;
      valueMoving = m_KernelFunction->Evaluate(valueMoving);

      weightMoving = valueMoving / dDenominatorMoving.GetSum();
      weightJoint = valueMoving * valueFixed / dDenominatorJoint.GetSum();

      weight = ( weightMoving - weightJoint );
      weight *= ( *biter ).MovingImageValue - ( *aiter ).MovingImageValue;

      totalWeight += weight;
      derivative -= ( *aditer ) * weight;
      } // end of sample A loop

    derivative += derivB * totalWeight.GetSum();
    } // end of sample B loop

  double nsamp    = double(m_NumberOfSpatialSamples);

  double threshold = -0.5 *nsamp *vcl_log(m_MinProbability);
  if( dLogSumMoving.GetSum() > threshold || dLogSumFixed.GetSum() > threshold
      || dLogSumJoint.GetSum() > threshold  )
    {
    // at least half the samples in B did not occur within
    // the Parzen window width of samples in A
    itkExceptionMacro(<< "Standard deviation is too small");
    }

  value  = dLogSumFixed.GetSum() + dLogSumMoving.GetSum() - dLogSumJoint.GetSum();
  value /= nsamp;
  value += vcl_log(nsamp);

  derivative /= nsamp;
  derivative /= vnl_math_sqr(m_MovingImageStandardDeviation);
}

/*
 * Get the match measure derivative
 */
template <typename TFixedImage, typename TMovingImage>
void
MutualInformationImageToImageMetric<TFixedImage, TMovingImage>
::GetDerivative(const ParametersType & parameters, DerivativeType & derivative) const
{
  MeasureType value;

  // call the combined version
  this->GetValueAndDerivative(parameters, value, derivative);
}

/*
 * Calculate derivatives of the image intensity with respect
 * to the transform parmeters.
 *
 * This should really be done by the mapper.
 *
 * This is a temporary solution until this feature is implemented
 * in the mapper. This solution only works for any transform
 * that support ComputeJacobianWithRespectToParameters()
 */
template <typename TFixedImage, typename TMovingImage>
void
MutualInformationImageToImageMetric<TFixedImage, TMovingImage>
::CalculateDerivatives(
  const FixedImagePointType & point,
  DerivativeType & derivatives,
  TransformJacobianType &jacobian) const
{
  MovingImagePointType mappedPoint = this->m_Transform->TransformPoint(point);

  CovariantVector<double, MovingImageDimension> imageDerivatives;

  if( m_DerivativeCalculator->IsInsideBuffer(mappedPoint) )
    {
    imageDerivatives = m_DerivativeCalculator->Evaluate(mappedPoint);
    }
  else
    {
    derivatives.Fill(0.0);
    return;
    }

  typedef typename TransformType::JacobianType JacobianType;
  this->m_Transform->ComputeJacobianWithRespectToParameters(point, jacobian);

  unsigned int numberOfParameters = this->m_Transform->GetNumberOfParameters();
  for( unsigned int k = 0; k < numberOfParameters; k++ )
    {
    derivatives[k] = 0.0;
    for( unsigned int j = 0; j < MovingImageDimension; j++ )
      {
      derivatives[k] += jacobian[j][k] * imageDerivatives[j];
      }
    }
}

/*
 * Reinitialize the seed of the random number generator
 */
template <typename TFixedImage, typename TMovingImage>
void
MutualInformationImageToImageMetric<TFixedImage, TMovingImage>
::ReinitializeSeed()
{
  Statistics::MersenneTwisterRandomVariateGenerator::GetInstance()->SetSeed();
}

/*
 * Reinitialize the seed of the random number generator
 */
template <typename TFixedImage, typename TMovingImage>
void
MutualInformationImageToImageMetric<TFixedImage, TMovingImage>
::ReinitializeSeed(int seed)
{
  Statistics::MersenneTwisterRandomVariateGenerator::GetInstance()->SetSeed(seed);
}

} // end namespace itk

#endif