/usr/include/ITK-4.5/itkNeuralNetworkObject.h is in libinsighttoolkit4-dev 4.5.0-3.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 | /*=========================================================================
*
* Copyright Insight Software Consortium
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0.txt
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
*=========================================================================*/
#ifndef __itkNeuralNetworkObject_h
#define __itkNeuralNetworkObject_h
#include "itkDataObject.h"
#include "itkLayerBase.h"
#include "itkLearningFunctionBase.h"
namespace itk
{
namespace Statistics
{
/** \class NeuralNetworkObject
* \brief This is the itkNeuralNetworkObject class.
*
* \ingroup ITKNeuralNetworks
*/
template<typename TMeasurementVector, typename TTargetVector >
class NeuralNetworkObject : public DataObject
{
public:
typedef NeuralNetworkObject Self;
typedef DataObject Superclass;
typedef SmartPointer<Self> Pointer;
typedef SmartPointer<const Self> ConstPointer;
itkTypeMacro(NeuralNetworkObject, DataObject);
typedef TMeasurementVector MeasurementVectorType;
typedef typename MeasurementVectorType::ValueType ValueType;
typedef Array<ValueType> NetworkOutputType;
typedef TTargetVector TargetVectorType;
typedef LayerBase<TMeasurementVector, TTargetVector> LayerInterfaceType;
virtual NetworkOutputType GenerateOutput(TMeasurementVector samplevector)=0;
virtual void BackwardPropagate(NetworkOutputType errors) = 0;
virtual void UpdateWeights(ValueType) = 0;
protected:
NeuralNetworkObject();
virtual ~NeuralNetworkObject();
/** Method to print the object. */
virtual void PrintSelf( std::ostream& os, Indent indent ) const;
ValueType m_LearningRate;
};
} // end namespace Statistics
} // end namespace itk
#ifndef ITK_MANUAL_INSTANTIATION
#include "itkNeuralNetworkObject.hxx"
#endif
#endif
|