This file is indexed.

/usr/include/ITK-4.5/itkNeuralNetworkObject.h is in libinsighttoolkit4-dev 4.5.0-3.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
/*=========================================================================
 *
 *  Copyright Insight Software Consortium
 *
 *  Licensed under the Apache License, Version 2.0 (the "License");
 *  you may not use this file except in compliance with the License.
 *  You may obtain a copy of the License at
 *
 *         http://www.apache.org/licenses/LICENSE-2.0.txt
 *
 *  Unless required by applicable law or agreed to in writing, software
 *  distributed under the License is distributed on an "AS IS" BASIS,
 *  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 *  See the License for the specific language governing permissions and
 *  limitations under the License.
 *
 *=========================================================================*/
#ifndef __itkNeuralNetworkObject_h
#define __itkNeuralNetworkObject_h

#include "itkDataObject.h"
#include "itkLayerBase.h"
#include "itkLearningFunctionBase.h"

namespace itk
{
namespace Statistics
{
/** \class NeuralNetworkObject
 * \brief This is the itkNeuralNetworkObject class.
 *
 * \ingroup ITKNeuralNetworks
 */

template<typename TMeasurementVector, typename TTargetVector >
class NeuralNetworkObject : public DataObject
{
public:

  typedef NeuralNetworkObject      Self;
  typedef DataObject               Superclass;
  typedef SmartPointer<Self>       Pointer;
  typedef SmartPointer<const Self> ConstPointer;

  itkTypeMacro(NeuralNetworkObject, DataObject);

  typedef TMeasurementVector                        MeasurementVectorType;
  typedef typename MeasurementVectorType::ValueType ValueType;
  typedef Array<ValueType>                          NetworkOutputType;
  typedef TTargetVector                             TargetVectorType;

  typedef LayerBase<TMeasurementVector, TTargetVector> LayerInterfaceType;

  virtual NetworkOutputType GenerateOutput(TMeasurementVector samplevector)=0;

  virtual void BackwardPropagate(NetworkOutputType errors) = 0;
  virtual void UpdateWeights(ValueType) = 0;

protected:

  NeuralNetworkObject();
  virtual ~NeuralNetworkObject();

  /** Method to print the object. */
  virtual void PrintSelf( std::ostream& os, Indent indent ) const;

  ValueType m_LearningRate;

};

} // end namespace Statistics
} // end namespace itk

#ifndef ITK_MANUAL_INSTANTIATION
#include "itkNeuralNetworkObject.hxx"
#endif

#endif