This file is indexed.

/usr/include/ITK-4.5/itkNormalVectorDiffusionFunction.hxx is in libinsighttoolkit4-dev 4.5.0-3.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
/*=========================================================================
 *
 *  Copyright Insight Software Consortium
 *
 *  Licensed under the Apache License, Version 2.0 (the "License");
 *  you may not use this file except in compliance with the License.
 *  You may obtain a copy of the License at
 *
 *         http://www.apache.org/licenses/LICENSE-2.0.txt
 *
 *  Unless required by applicable law or agreed to in writing, software
 *  distributed under the License is distributed on an "AS IS" BASIS,
 *  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 *  See the License for the specific language governing permissions and
 *  limitations under the License.
 *
 *=========================================================================*/
#ifndef __itkNormalVectorDiffusionFunction_hxx
#define __itkNormalVectorDiffusionFunction_hxx

#include "itkNormalVectorDiffusionFunction.h"
#include "itkVector.h"

namespace itk
{
template< typename TSparseImageType >
NormalVectorDiffusionFunction< TSparseImageType >
::NormalVectorDiffusionFunction()
{
  // check: should some of this be in Initialize?
  RadiusType r;

  for ( unsigned int j = 0; j < ImageDimension; j++ )
    {
    r[j] = 1;
    }

  this->SetRadius(r);
  this->SetTimeStep( static_cast< TimeStepType >( 0.5 / ImageDimension ) );
  m_NormalProcessType = 0;
  m_ConductanceParameter = NumericTraits< NodeValueType >::Zero;
  m_FluxStopConstant = NumericTraits< NodeValueType >::Zero;
}

template< typename TSparseImageType >
void
NormalVectorDiffusionFunction< TSparseImageType >
::PrintSelf(std::ostream & os, Indent indent) const
{
  Superclass::PrintSelf(os, indent);
  os << indent << "NormalProcessType: " << m_NormalProcessType << std::endl;
  os << indent << "ConductanceParameter: " << m_ConductanceParameter << std::endl;
  os << indent << "FluxStopConstant: " << m_FluxStopConstant << std::endl;
}

template< typename TSparseImageType >
void
NormalVectorDiffusionFunction< TSparseImageType >
::PrecomputeSparseUpdate(NeighborhoodType & it) const
{
  unsigned int  i, j, k;
  NodeValueType DotProduct;

  NodeType *             CenterNode = it.GetCenterPixel();
  const NormalVectorType CenterPixel = CenterNode->m_Data;

  NodeType *       PreviousNode, *OtherNode;
  NormalVectorType PreviousPixel;

  Vector< NodeValueType, ImageDimension > gradient[ImageDimension];
  NormalVectorType                        PositiveSidePixel[2], NegativeSidePixel[2], flux;

  SizeValueType                           stride[ImageDimension];
  SizeValueType                           center;

  const NeighborhoodScalesType neighborhoodScales = this->ComputeNeighborhoodScales();

  for ( j = 0; j < ImageDimension; j++ )
    {
    stride[j] = it.GetStride( j );
    }
  center =  it.Size() / 2;

  for ( i = 0; i < ImageDimension; i++ ) // flux offset axis
    {
    PreviousNode = it.GetPrevious (i);
    if ( PreviousNode == 0 )
      {
      for ( j = 0; j < ImageDimension; j++ )
        {
        CenterNode->m_Flux[i][j] = NumericTraits< NodeValueType >::Zero;
        }
      }
    else
      {
      PreviousPixel = PreviousNode->m_Data;
      for ( j = 0; j < ImageDimension; j++ ) // derivative axis
        {
        if ( i != j ) // compute derivative on a plane
          {
          // compute differences (j-axis) in line with center pixel
          OtherNode = it.GetPrevious (j);
          if ( OtherNode == 0 )
            {
            NegativeSidePixel[0] = CenterPixel;
            }
          else
            {
            NegativeSidePixel[0] = OtherNode->m_Data;
            }
          OtherNode = it.GetNext (j);
          if ( OtherNode == 0 )
            {
            PositiveSidePixel[0] = CenterPixel;
            }
          else
            {
            PositiveSidePixel[0] = OtherNode->m_Data;
            }

          // compute derivative (j-axis) offset from center pixel on i-axis
          OtherNode = it.GetPixel (center - stride[i] - stride[j]);
          if ( OtherNode == 0 )
            {
            NegativeSidePixel[1] = PreviousPixel;
            }
          else
            {
            NegativeSidePixel[1] = OtherNode->m_Data;
            }
          OtherNode = it.GetPixel (center - stride[i] + stride[j]);
          if ( OtherNode == 0 )
            {
            PositiveSidePixel[1] = PreviousPixel;
            }
          else
            {
            PositiveSidePixel[1] = OtherNode->m_Data;
            }

          gradient[j] = ( ( PositiveSidePixel[0] + PositiveSidePixel[1] )
                          - ( NegativeSidePixel[0] + NegativeSidePixel[1] ) )
                        * static_cast< NodeValueType >( 0.25 ) * neighborhoodScales[j];
          }
        else // compute derivative on a line
          {
          gradient[i] = ( CenterPixel - PreviousPixel ) * neighborhoodScales[i];
          }
        } // end derivative axis

      // now compute the intrinsic derivative
      for ( j = 0; j < ImageDimension; j++ ) // component axis
        {
        DotProduct = NumericTraits< NodeValueType >::Zero;
        for ( k = 0; k < ImageDimension; k++ ) // derivative axis
          {
          DotProduct += ( gradient[k][j] * CenterNode->m_ManifoldNormal[i][k] );
          }
        flux[j] = gradient[i][j] - CenterNode->m_ManifoldNormal[i][i] * DotProduct;
        }
      // do following line for non-intrinsic derivative
      //flux = gradient[i];
      if ( m_NormalProcessType == 1 )
        {
        // anisotropic diffusion
        CenterNode->m_Flux[i] =
          flux * this->FluxStopFunction( flux.GetSquaredNorm() );
        }
      else
        {
        // isotropic diffusion
        CenterNode->m_Flux[i] = flux;
        }
      } // end if-else PreviousNode==0
    }   // end flux offset axis
}

template< typename TSparseImageType >
typename NormalVectorDiffusionFunction< TSparseImageType >::NormalVectorType
NormalVectorDiffusionFunction< TSparseImageType >
::ComputeSparseUpdate(NeighborhoodType & it,
                      void *, const FloatOffsetType &) const
{
  unsigned int           i;
  NormalVectorType       change;
  NodeValueType          DotProduct;
  const NodeType *       CenterNode = it.GetCenterPixel();
  const NormalVectorType CenterPixel = CenterNode->m_Data;
  NodeType *             NextNode;

  const NeighborhoodScalesType neighborhoodScales = this->ComputeNeighborhoodScales();

  change = NumericTraits< NormalVectorType >::Zero;
  for ( i = 0; i < ImageDimension; i++ ) // flux offset axis
    {
    NextNode = it.GetNext (i);
    if ( NextNode == 0 )
      {
      change -= CenterNode->m_Flux[i] * neighborhoodScales[i];
      }
    else
      {
      change += ( NextNode->m_Flux[i] - CenterNode->m_Flux[i] ) * neighborhoodScales[i];
      }
    } // end flux offset axis
  DotProduct = change * CenterPixel;
  change -= CenterPixel * DotProduct;

  return change;
}
} // end namespace itk

#endif