/usr/include/ITK-4.5/itkOtsuMultipleThresholdsCalculator.hxx is in libinsighttoolkit4-dev 4.5.0-3.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 | /*=========================================================================
*
* Copyright Insight Software Consortium
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0.txt
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
*=========================================================================*/
#ifndef __itkOtsuMultipleThresholdsCalculator_hxx
#define __itkOtsuMultipleThresholdsCalculator_hxx
#include "itkOtsuMultipleThresholdsCalculator.h"
namespace itk
{
template< typename TInputHistogram >
OtsuMultipleThresholdsCalculator< TInputHistogram >
::OtsuMultipleThresholdsCalculator()
{
m_NumberOfThresholds = 1;
m_Output.resize(m_NumberOfThresholds);
m_ValleyEmphasis = false;
std::fill(m_Output.begin(), m_Output.end(), NumericTraits< MeasurementType >::Zero);
}
template< typename TInputHistogram >
const typename OtsuMultipleThresholdsCalculator< TInputHistogram >::OutputType &
OtsuMultipleThresholdsCalculator< TInputHistogram >
::GetOutput()
{
return m_Output;
}
/**
* Increment the thresholds of one position along the histogram
*/
template< typename TInputHistogram >
bool
OtsuMultipleThresholdsCalculator< TInputHistogram >
::IncrementThresholds(InstanceIdentifierVectorType & thresholdIndexes,
MeanType globalMean,
MeanVectorType & classMean,
FrequencyVectorType & classFrequency)
{
typename TInputHistogram::ConstPointer histogram = this->GetInputHistogram();
SizeValueType numberOfHistogramBins = histogram->Size();
SizeValueType numberOfClasses = classMean.size();
MeanType meanOld;
FrequencyType freqOld;
unsigned int k;
int j;
// from the upper threshold down
for ( j = static_cast< int >( m_NumberOfThresholds - 1 ); j >= 0; j-- )
{
// if this threshold can be incremented (i.e. we're not at the end of the
// histogram)
if ( thresholdIndexes[j] < numberOfHistogramBins - 2 - ( m_NumberOfThresholds - 1 - j ) )
{
// increment it and update mean and frequency of the class bounded by the
// threshold
++thresholdIndexes[j];
meanOld = classMean[j];
freqOld = classFrequency[j];
classFrequency[j] += histogram->GetFrequency(thresholdIndexes[j]);
if ( NumericTraits< FrequencyType >::IsPositive(classFrequency[j]) )
{
classMean[j] = ( meanOld * static_cast< MeanType >( freqOld )
+ static_cast< MeanType >( histogram->GetMeasurementVector(thresholdIndexes[j])[0] )
* static_cast< MeanType >( histogram->GetFrequency(thresholdIndexes[j]) ) )
/ static_cast< MeanType >( classFrequency[j] );
}
else
{
classMean[j] = NumericTraits< MeanType >::Zero;
}
// set higher thresholds adjacent to their previous ones, and update mean
// and frequency of the respective classes
for ( k = j + 1; k < m_NumberOfThresholds; k++ )
{
thresholdIndexes[k] = thresholdIndexes[k - 1] + 1;
classFrequency[k] = histogram->GetFrequency(thresholdIndexes[k]);
if ( NumericTraits< FrequencyType >::IsPositive(classFrequency[k]) )
{
classMean[k] = static_cast< MeanType >( histogram->GetMeasurementVector(thresholdIndexes[k])[0] );
}
else
{
classMean[k] = NumericTraits< MeanType >::Zero;
}
}
// update mean and frequency of the highest class
classFrequency[numberOfClasses - 1] = histogram->GetTotalFrequency();
classMean[numberOfClasses - 1] = globalMean * histogram->GetTotalFrequency();
for ( k = 0; k < numberOfClasses - 1; k++ )
{
classFrequency[numberOfClasses - 1] -= classFrequency[k];
classMean[numberOfClasses - 1] -= classMean[k] * static_cast< MeanType >( classFrequency[k] );
}
if ( NumericTraits< FrequencyType >::IsPositive(classFrequency[numberOfClasses - 1]) )
{
classMean[numberOfClasses - 1] /= static_cast< MeanType >( classFrequency[numberOfClasses - 1] );
}
else
{
classMean[numberOfClasses - 1] = NumericTraits< MeanType >::Zero;
}
// exit the for loop if a threshold has been incremented
break;
}
else // if this threshold can't be incremented
{
// if it's the lowest threshold
if ( j == 0 )
{
// we couldn't increment because we're done
return false;
}
}
}
// we incremented
return true;
}
/**
* Compute Otsu's thresholds
*/
template< typename TInputHistogram >
void
OtsuMultipleThresholdsCalculator< TInputHistogram >
::Compute()
{
typename TInputHistogram::ConstPointer histogram = this->GetInputHistogram();
// TODO: as an improvement, the class could accept multi-dimensional
// histograms
// and the user could specify the dimension to apply the algorithm to.
if ( histogram->GetSize().Size() != 1 )
{
itkExceptionMacro(<< "Histogram must be 1-dimensional.");
}
// compute global mean
typename TInputHistogram::ConstIterator iter = histogram->Begin();
typename TInputHistogram::ConstIterator end = histogram->End();
MeanType globalMean = NumericTraits< MeanType >::Zero;
FrequencyType globalFrequency = histogram->GetTotalFrequency();
while ( iter != end )
{
globalMean += static_cast< MeanType >( iter.GetMeasurementVector()[0] )
* static_cast< MeanType >( iter.GetFrequency() );
++iter;
}
globalMean /= static_cast< MeanType >( globalFrequency );
SizeValueType numberOfClasses = m_NumberOfThresholds + 1;
// initialize thresholds
InstanceIdentifierVectorType thresholdIndexes(m_NumberOfThresholds);
SizeValueType j;
for ( j = 0; j < m_NumberOfThresholds; j++ )
{
thresholdIndexes[j] = j;
}
InstanceIdentifierVectorType maxVarThresholdIndexes = thresholdIndexes;
// compute frequency and mean of initial classes
FrequencyType freqSum = NumericTraits< FrequencyType >::Zero;
FrequencyVectorType classFrequency(numberOfClasses);
for ( j = 0; j < numberOfClasses - 1; j++ )
{
classFrequency[j] = histogram->GetFrequency(thresholdIndexes[j]);
freqSum += classFrequency[j];
}
classFrequency[numberOfClasses - 1] = globalFrequency - freqSum;
// Convert the frequencies to probabilities (i.e. normalize the histogram).
SizeValueType histSize = histogram->GetSize()[0];
WeightVectorType imgPDF(histSize);
for ( j = 0; j < histSize; j++ )
{
imgPDF[j] = (WeightType)histogram->GetFrequency(j) / (WeightType)globalFrequency;
}
MeanType meanSum = NumericTraits< MeanType >::Zero;
MeanVectorType classMean(numberOfClasses);
for ( j = 0; j < numberOfClasses - 1; j++ )
{
if ( NumericTraits< FrequencyType >::IsPositive(classFrequency[j]) )
{
classMean[j] = static_cast< MeanType >( histogram->GetMeasurementVector(j)[0] );
}
else
{
classMean[j] = NumericTraits< MeanType >::Zero;
}
meanSum += classMean[j] * static_cast< MeanType >( classFrequency[j] );
}
if ( NumericTraits< FrequencyType >::IsPositive(classFrequency[numberOfClasses - 1]) )
{
classMean[numberOfClasses
- 1] =
( globalMean * static_cast< MeanType >( globalFrequency )
- meanSum ) / static_cast< MeanType >( classFrequency[numberOfClasses - 1] );
}
else
{
classMean[numberOfClasses - 1] = NumericTraits< MeanType >::Zero;
}
VarianceType maxVarBetween = NumericTraits< VarianceType >::Zero;
for ( j = 0; j < numberOfClasses; j++ )
{
maxVarBetween += (static_cast< VarianceType >( classFrequency[j] ) / static_cast< VarianceType >( globalFrequency ))
* static_cast< VarianceType >( ( classMean[j] ) * ( classMean[j] ) );
}
// Sum the relevant weights for valley emphasis
WeightType valleyEmphasisFactor = NumericTraits< WeightType >::Zero;
if (m_ValleyEmphasis)
{
for ( j = 0; j < numberOfClasses - 1; j++ )
{
valleyEmphasisFactor = imgPDF[thresholdIndexes[j]];
}
valleyEmphasisFactor = 1.0 - valleyEmphasisFactor;
maxVarBetween = maxVarBetween * valleyEmphasisFactor;
}
// explore all possible threshold configurations and choose the one that
// yields maximum between-class variance
while ( Self::IncrementThresholds(thresholdIndexes, globalMean, classMean, classFrequency) )
{
VarianceType varBetween = NumericTraits< VarianceType >::Zero;
for ( j = 0; j < numberOfClasses; j++ )
{
// The true between-class variance \sigma_B^2 for any number of classes is defined as:
// \sigma_B^2 = \sum_{k=1}^{M} \omega_k (\mu_k - \mu_T)^2
// where \omega_k = classFrequency[j]/globalFrequency is the probability of the class,
// \mu_k = classMean[j] is the mean of the class,
// \mu_T = globalMean is the overall mean,
// and M is the number of classes.
// However, in the paper "A Fast Algorithm for Multilevel Thresholding" by Liao, Chen, and Chung,
// it was shown that this can be simplified to
// (\sum_{k=1}^{M} \omega_k \mu_k^2) - \mu_T^2
// Since we are looking for the argmax, the second term can be ignored because it is a constant, leading to the simpler
// (\sum_{k=1}^{M} \omega_k \mu_k^2), which is what is implemented here.
// Although this is no longer truly a "between class variance", we keep that name since it is only different by a constant.
varBetween += (static_cast< VarianceType >( classFrequency[j] ) / static_cast< VarianceType >( globalFrequency ))
* static_cast< VarianceType >( ( classMean[j] ) * ( classMean[j] ) );
}
if (m_ValleyEmphasis)
{
// Sum relevant weights to get valley emphasis factor
valleyEmphasisFactor = NumericTraits< WeightType >::Zero;
for ( j = 0; j < numberOfClasses - 1; j++ )
{
valleyEmphasisFactor += imgPDF[thresholdIndexes[j]];
}
valleyEmphasisFactor = 1.0 - valleyEmphasisFactor;
varBetween = varBetween * valleyEmphasisFactor;
}
if ( varBetween > maxVarBetween )
{
maxVarBetween = varBetween;
maxVarThresholdIndexes = thresholdIndexes;
}
}
// copy corresponding bin max to threshold vector
m_Output.resize(m_NumberOfThresholds);
for ( j = 0; j < m_NumberOfThresholds; j++ )
{
m_Output[j] = histogram->GetMeasurement(maxVarThresholdIndexes[j],0);
}
}
template< typename TInputHistogram >
void
OtsuMultipleThresholdsCalculator< TInputHistogram >
::PrintSelf(std::ostream & os, Indent indent) const
{
Superclass::PrintSelf(os, indent);
os << indent << "NumberOfThresholds: " << m_NumberOfThresholds;
os << indent << "Output: ";
for ( SizeValueType j = 0; j < m_NumberOfThresholds; j++ )
{
os << m_Output[j] << " ";
}
os << std::endl;
}
} // end namespace itk
#endif
|