This file is indexed.

/usr/include/ITK-4.5/itkQuadrilateralCell.hxx is in libinsighttoolkit4-dev 4.5.0-3.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
/*=========================================================================
 *
 *  Copyright Insight Software Consortium
 *
 *  Licensed under the Apache License, Version 2.0 (the "License");
 *  you may not use this file except in compliance with the License.
 *  You may obtain a copy of the License at
 *
 *         http://www.apache.org/licenses/LICENSE-2.0.txt
 *
 *  Unless required by applicable law or agreed to in writing, software
 *  distributed under the License is distributed on an "AS IS" BASIS,
 *  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 *  See the License for the specific language governing permissions and
 *  limitations under the License.
 *
 *=========================================================================*/
#ifndef __itkQuadrilateralCell_hxx
#define __itkQuadrilateralCell_hxx
#include "itkQuadrilateralCell.h"
#include "vnl/algo/vnl_determinant.h"

namespace itk
{

/**
 * Standard CellInterface:
 */
template< typename TCellInterface >
void
QuadrilateralCell< TCellInterface >
::MakeCopy(CellAutoPointer & cellPointer) const
{
  cellPointer.TakeOwnership(new Self);
  cellPointer->SetPointIds( this->GetPointIds() );
}

/**
 * Standard CellInterface:
 * Get the topological dimension of this cell.
 */
template< typename TCellInterface >
unsigned int
QuadrilateralCell< TCellInterface >
::GetDimension(void) const
{
  return Self::CellDimension;
}

/**
 * Standard CellInterface:
 * Get the number of points required to define the cell.
 */
template< typename TCellInterface >
unsigned int
QuadrilateralCell< TCellInterface >
::GetNumberOfPoints(void) const
{
  return Self::NumberOfPoints;
}

/**
 * Standard CellInterface:
 * Get the number of boundary features of the given dimension.
 */
template< typename TCellInterface >
typename QuadrilateralCell< TCellInterface >::CellFeatureCount
QuadrilateralCell< TCellInterface >
::GetNumberOfBoundaryFeatures(int dimension) const
{
  switch ( dimension )
    {
    case 0:
      return GetNumberOfVertices();
    case 1:
      return GetNumberOfEdges();
    default:
      return 0;
    }
}

/**
 * Standard CellInterface:
 * Get the boundary feature of the given dimension specified by the given
 * cell feature Id.
 * The Id can range from 0 to GetNumberOfBoundaryFeatures(dimension)-1.
 */
template< typename TCellInterface >
bool
QuadrilateralCell< TCellInterface >
::GetBoundaryFeature(int dimension, CellFeatureIdentifier featureId, CellAutoPointer & cellPointer)
{
  switch ( dimension )
    {
    case 0:
      {
      VertexAutoPointer vertexPointer;
      if ( this->GetVertex(featureId, vertexPointer) )
        {
        TransferAutoPointer(cellPointer, vertexPointer);
        return true;
        }
      break;
      }
    case 1:
      {
      EdgeAutoPointer edgePointer;
      if ( this->GetEdge(featureId, edgePointer) )
        {
        TransferAutoPointer(cellPointer, edgePointer);
        return true;
        }
      break;
      }
    default:
      break; //just fall through and return false;
    }
  cellPointer.Reset();
  return false;
}

/**
 * Standard CellInterface:
 * Set the point id list used by the cell.  It is assumed that the given
 * iterator can be incremented and safely de-referenced enough times to
 * get all the point ids needed by the cell.
 */
template< typename TCellInterface >
void
QuadrilateralCell< TCellInterface >
::SetPointIds(PointIdConstIterator first)
{
  PointIdConstIterator ii(first);

  for ( unsigned int i = 0; i < Self::NumberOfPoints; ++i )
    {
    m_PointIds[i] = *ii++;
    }
}

/**
 * Standard CellInterface:
 * Set the point id list used by the cell.  It is assumed that the range
 * of iterators [first, last) contains the correct number of points needed to
 * define the cell.  The position *last is NOT referenced, so it can safely
 * be one beyond the end of an array or other container.
 */
template< typename TCellInterface >
void
QuadrilateralCell< TCellInterface >
::SetPointIds(PointIdConstIterator first, PointIdConstIterator last)
{
  int                  localId = 0;
  PointIdConstIterator ii(first);

  while ( ii != last )
    {
    m_PointIds[localId++] = *ii++;
    }
}

/**
 * Standard CellInterface:
 * Set an individual point identifier in the cell.
 */
template< typename TCellInterface >
void
QuadrilateralCell< TCellInterface >
::SetPointId(int localId, PointIdentifier ptId)
{
  m_PointIds[localId] = ptId;
}

/**
 * Standard CellInterface:
 * Get a begin iterator to the list of point identifiers used by the cell.
 */
template< typename TCellInterface >
typename QuadrilateralCell< TCellInterface >::PointIdIterator
QuadrilateralCell< TCellInterface >
::PointIdsBegin(void)
{
  return &m_PointIds[0];
}

/**
 * Standard CellInterface:
 * Get a const begin iterator to the list of point identifiers used
 * by the cell.
 */
template< typename TCellInterface >
typename QuadrilateralCell< TCellInterface >::PointIdConstIterator
QuadrilateralCell< TCellInterface >
::PointIdsBegin(void) const
{
  return &m_PointIds[0];
}

/**
 * Standard CellInterface:
 * Get an end iterator to the list of point identifiers used by the cell.
 */
template< typename TCellInterface >
typename QuadrilateralCell< TCellInterface >::PointIdIterator
QuadrilateralCell< TCellInterface >
::PointIdsEnd(void)
{
  return &m_PointIds[Self::NumberOfPoints - 1] + 1;
}

/**
 * Standard CellInterface:
 * Get a const end iterator to the list of point identifiers used
 * by the cell.
 */
template< typename TCellInterface >
typename QuadrilateralCell< TCellInterface >::PointIdConstIterator
QuadrilateralCell< TCellInterface >
::PointIdsEnd(void) const
{
  return &m_PointIds[Self::NumberOfPoints - 1] + 1;
}

/**
 * Quadrilateral-specific:
 * Get the number of vertices defining the quadrilateral.
 */
template< typename TCellInterface >
typename QuadrilateralCell< TCellInterface >::CellFeatureCount
QuadrilateralCell< TCellInterface >
::GetNumberOfVertices(void) const
{
  return NumberOfVertices;
}

/**
 * Quadrilateral-specific:
 * Get the number of edges defined for the quadrilateral.
 */
template< typename TCellInterface >
typename QuadrilateralCell< TCellInterface >::CellFeatureCount
QuadrilateralCell< TCellInterface >
::GetNumberOfEdges(void) const
{
  return Self::NumberOfEdges;
}

/**
 * Quadrilateral-specific:
 * Get the vertex specified by the given cell feature Id.
 * The Id can range from 0 to GetNumberOfVertices()-1.
 */
template< typename TCellInterface >
bool
QuadrilateralCell< TCellInterface >
::GetVertex(CellFeatureIdentifier vertexId, VertexAutoPointer & vertexPointer)
{
  VertexType *vert = new VertexType;

  vert->SetPointId(0, m_PointIds[vertexId]);
  vertexPointer.TakeOwnership(vert);
  return true;
}

/**
 * Quadrilateral-specific:
 * Get the edge specified by the given cell feature Id.
 * The Id can range from 0 to GetNumberOfEdges()-1.
 */
template< typename TCellInterface >
bool
QuadrilateralCell< TCellInterface >
::GetEdge(CellFeatureIdentifier edgeId, EdgeAutoPointer & edgePointer)
{
  EdgeType *edge = new EdgeType;

  for ( int i = 0; i < EdgeType::NumberOfPoints; ++i )
    {
    edge->SetPointId(i, m_PointIds[m_Edges[edgeId][i]]);
    }
  edgePointer.TakeOwnership(edge);
  return true;
}

/** Evaluate the position inside the cell */
template< typename TCellInterface >
bool
QuadrilateralCell< TCellInterface >
::EvaluatePosition(CoordRepType *x,
                   PointsContainer *points,
                   CoordRepType *closestPoint,
                   CoordRepType pcoord[CellDimension],
                   double *dist2,
                   InterpolationWeightType *weight)
{
  static const int    ITK_QUAD_MAX_ITERATION = 10;
  static const double ITK_QUAD_CONVERGED = 1.e-03;
  static const double ITK_DIVERGED = 1.e6;

  int                     iteration, converged;
  double                  params[CellDimension];
  double                  fcol[CellDimension];
  double                  rcol[CellDimension];
  double                  scol[CellDimension];
  double                  d;
  PointType               pt;
  CoordRepType            derivs[NumberOfDerivatives];
  InterpolationWeightType weights[NumberOfPoints];

  //  set initial position for Newton's method
  int          subId = 0;
  CoordRepType pcoords[CellDimension];

  pcoords[0] = pcoords[1] = params[0] = params[1] = 0.5;

  // NOTE: Point x is here assumed to lie on the plane of Quad.  Otherwise, (FIXME)
  //   - Get normal for quadrilateral, using its 3 corners
  //   - Project point x onto Quad plane using this normal
  // See vtkQuad for this:  ComputeNormal (this, pt1, pt2, pt3, n);  vtkPlane::ProjectPoint(x,pt1,n,cp);

  //  enter iteration loop
  for ( iteration = converged = 0;
        !converged && ( iteration < ITK_QUAD_MAX_ITERATION ); iteration++ )
    {
    //  calculate element interpolation functions and derivatives
    this->InterpolationFunctions(pcoords, weights);
    this->InterpolationDerivs(pcoords, derivs);

    //  calculate newton functions
    for ( unsigned int i = 0; i < CellDimension; ++i )
      {
      fcol[i] = rcol[i] = scol[i] = 0.0;
      }
    for ( unsigned int i = 0; i < NumberOfPoints; ++i )
      {
      pt = points->GetElement(m_PointIds[i]);
      // using the projection normal n, one can choose which 2 axes to use out of 3
      // any 2 should work, so (not having n) we use [x,y] (also assuming 2D use of QuadCell)
      // if we compute n, one can use the closest two indices as in vtkQuad
      for ( unsigned int j = 0; j < CellDimension; ++j )
        {
        fcol[j] += pt[j] * weights[i];
        rcol[j] += pt[j] * derivs[i];
        scol[j] += pt[j] * derivs[i + NumberOfPoints];
        }
      }

    for ( unsigned int i = 0; i < CellDimension; ++i )
      {
      fcol[i] -= x[i];
      }

    //  compute determinants and generate improvements
    vnl_matrix_fixed< CoordRepType, CellDimension, CellDimension > mat;
    for ( unsigned int i = 0; i < CellDimension; ++i )
      {
      mat.put(0, i, rcol[i]);
      mat.put(1, i, scol[i]);
      }

    d = vnl_determinant(mat);
    //d=vtkMath::Determinant2x2(rcol,scol);
    if ( vcl_abs(d) < 1.e-20 )
      {
      return false;
      }

    vnl_matrix_fixed< CoordRepType, CellDimension, CellDimension > mat1;
    for ( unsigned int i = 0; i < CellDimension; ++i )
      {
      mat1.put(0, i, fcol[i]);
      mat1.put(1, i, scol[i]);
      }

    vnl_matrix_fixed< CoordRepType, CellDimension, CellDimension > mat2;
    for ( unsigned int i = 0; i < CellDimension; ++i )
      {
      mat2.put(0, i, rcol[i]);
      mat2.put(1, i, fcol[i]);
      }

    pcoords[0] = params[0] - vnl_determinant(mat1) / d;
    pcoords[1] = params[1] - vnl_determinant(mat2) / d;

    if ( pcoord )
      {
      pcoord[0] = pcoords[0];
      pcoord[1] = pcoords[1];
      }

    //  check for convergence
    if ( ( ( vcl_abs(pcoords[0] - params[0]) ) < ITK_QUAD_CONVERGED )
         && ( ( vcl_abs(pcoords[1] - params[1]) ) < ITK_QUAD_CONVERGED ) )
      {
      converged = 1;
      }

    // Test for bad divergence (S.Hirschberg 11.12.2001)
    else if ( ( vcl_abs(pcoords[0]) > ITK_DIVERGED )
              || ( vcl_abs(pcoords[1]) > ITK_DIVERGED ) )
      {
      return -1;
      }

    //  if not converged, repeat
    else
      {
      params[0] = pcoords[0];
      params[1] = pcoords[1];
      }
    }

  //  if not converged, set the parametric coordinates to arbitrary values
  //  outside of element
  if ( !converged )
    {
    return false;
    }

  this->InterpolationFunctions(pcoords, weights);

  if ( weight )
    {
    for ( unsigned int i = 0; i < NumberOfPoints; ++i )
      {
      weight[i] = weights[i];
      }
    }

  if ( pcoords[0] >= -0.001 && pcoords[0] <= 1.001
       && pcoords[1] >= -0.001 && pcoords[1] <= 1.001 )
    {
    if ( closestPoint )
      {
      closestPoint[0] = x[0];
      closestPoint[1] = x[1];
      *dist2 = 0.0; //inside quadrilateral
      }
    return true;
    }
  else
    {
    CoordRepType pc[CellDimension], w[NumberOfPoints];
    if ( closestPoint )
      {
      for ( unsigned int i = 0; i < CellDimension; ++i ) //only approximate ??
        {
        if ( pcoords[i] < 0.0 )
          {
          pc[i] = 0.0;
          }
        else if ( pcoords[i] > 1.0 )
          {
          pc[i] = 1.0;
          }
        else
          {
          pc[i] = pcoords[i];
          }
        }
      this->EvaluateLocation(subId, points, pc, closestPoint, (InterpolationWeightType *)w);

      *dist2 = 0;
      for ( unsigned int i = 0; i < CellDimension; ++i )
        {
        *dist2 += ( closestPoint[i] - x[i] ) * ( closestPoint[i] - x[i] );
        }
      }
    return false;
    }
}

/** Compute iso-parametric interpolation functions */
template< typename TCellInterface >
void
QuadrilateralCell< TCellInterface >
::InterpolationFunctions(const CoordRepType pointCoords[CellDimension], InterpolationWeightType weights[NumberOfPoints])
{
  const double rm = 1. - pointCoords[0];
  const double sm = 1. - pointCoords[1];

  weights[0] = rm * sm;
  weights[1] = pointCoords[0] * sm;
  weights[2] = pointCoords[0] * pointCoords[1];
  weights[3] = rm * pointCoords[1];
}

/** Compute iso-parametric interpolation functions */
template< typename TCellInterface >
void
QuadrilateralCell< TCellInterface >
::InterpolationDerivs(const CoordRepType pointCoords[CellDimension], CoordRepType derivs[NumberOfDerivatives])
{
  const double rm = 1. - pointCoords[0];
  const double sm = 1. - pointCoords[1];

  // r-derivatives
  derivs[0] = -sm;
  derivs[1] = sm;
  derivs[2] = pointCoords[1];
  derivs[3] = -pointCoords[1];
  // s-derivatives
  derivs[4] = -rm;
  derivs[5] = -pointCoords[0];
  derivs[6] = pointCoords[0];
  derivs[7] = rm;
}

/** Evaluate the location inside the cell */
template< typename TCellInterface >
void
QuadrilateralCell< TCellInterface >
::EvaluateLocation(int & itkNotUsed(subId), const PointsContainer *points, const CoordRepType pointCoords[PointDimension],
                   CoordRepType x[PointDimension], InterpolationWeightType *weights)
{
  this->InterpolationFunctions(pointCoords, weights);

  for ( unsigned int ii = 0; ii < PointDimension; ++ii )
    {
    x[ii] = NumericTraits< CoordRepType >::Zero;
    }

  for ( unsigned int ii = 0; ii < NumberOfPoints; ++ii )
    {
    const PointType & point = points->GetElement(m_PointIds[ii]);

    for ( unsigned int jj = 0; jj < PointDimension; ++jj )
      {
      x[jj] += point[jj] * weights[ii];
      }
    }
}

} // end namespace itk

#endif