This file is indexed.

/usr/include/ITK-4.5/itkQuasiNewtonOptimizerv4.h is in libinsighttoolkit4-dev 4.5.0-3.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
/*=========================================================================
 *
 *  Copyright Insight Software Consortium
 *
 *  Licensed under the Apache License, Version 2.0 (the "License");
 *  you may not use this file except in compliance with the License.
 *  You may obtain a copy of the License at
 *
 *         http://www.apache.org/licenses/LICENSE-2.0.txt
 *
 *  Unless required by applicable law or agreed to in writing, software
 *  distributed under the License is distributed on an "AS IS" BASIS,
 *  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 *  See the License for the specific language governing permissions and
 *  limitations under the License.
 *
 *=========================================================================*/
#ifndef __itkQuasiNewtonOptimizerv4_h
#define __itkQuasiNewtonOptimizerv4_h

#include "itkArray2D.h"
#include "itkGradientDescentOptimizerv4.h"

#include "vnl/algo/vnl_matrix_inverse.h"
#include "vnl/algo/vnl_determinant.h"

namespace itk
{
/** \class QuasiNewtonOptimizerv4Template
 * \brief Implement a Quasi-Newton optimizer with BFGS Hessian estimation.
 *
 * Second order approximation of the cost function is usually more efficient
 * since it estimates the descent or ascent direction more precisely. However,
 * computation of Hessian is usually expensive or unavailable. Alternatively
 * Quasi-Newton methods can estimate a Hessian from the gradients in previous
 * steps. Here a specific Quasi-Newton method, BFGS, is used to compute the
 * Quasi-Newton steps.
 *
 * The Quasi-Newton method doesn't produce a valid step sometimes, ex. when
 * the metric function is not a convex locally. In this scenario, the gradient
 * step is used after being scaled properly.
 *
 * A helper member object, m_ScalesEstimator may be set to estimate parameter
 * scales and step scales. A step scale measures the magnitude of a step and
 * is used for learning rate computation.

 * When m_ScalesEstimator is set, SetMaximumNewtonStepSizeInPhysicalUnits()
 * may be called to set the maximum step size. If it is not called,
 * m_MaximumNewtonStepSizeInPhysicalUnits defaults to lambda *
 * OptimizerParameterScalesEstimatorTemplate::EstimateMaximumStepSize(), where lambda is
 * in [1,5].
 *
 * When m_ScalesEstimator is not set, the parameter scales and learning rates
 * defaults to ones, or can be set by users manually.
 *
 * \ingroup ITKOptimizersv4
 */
template<typename TInternalComputationValueType>
class QuasiNewtonOptimizerv4Template :
  public         GradientDescentOptimizerv4Template<TInternalComputationValueType>
{
public:
  /** Standard class typedefs. */
  typedef QuasiNewtonOptimizerv4Template                                 Self;
  typedef GradientDescentOptimizerv4Template<TInternalComputationValueType>    Superclass;
  typedef SmartPointer< Self >                                           Pointer;
  typedef SmartPointer< const Self >                                     ConstPointer;

  /** Method for creation through the object factory. */
  itkNewMacro(Self);

  /** Run-time type information (and related methods). */
  itkTypeMacro(QuasiNewtonOptimizerv4Template, Superclass);

  /** It should be possible to derive the internal computation type from the class object. */
  typedef TInternalComputationValueType          InternalComputationValueType;

  typedef typename Superclass::ParametersType    ParametersType;
  typedef typename Superclass::MeasureType       MeasureType;
  typedef typename Superclass::DerivativeType    DerivativeType;
  typedef typename Superclass::IndexRangeType    IndexRangeType;
  typedef typename Superclass::StopConditionType StopConditionType;

  /** Type for Hessian matrix in the Quasi-Newton method */
  typedef itk::Array2D<TInternalComputationValueType> HessianType;

  /** Type for an array of Hessian matrix for local support */
  typedef std::vector<HessianType> HessianArrayType;

  /** Start and run the optimization */
  virtual void StartOptimization( bool doOnlyInitialization = false );

  /** Set the maximum tolerable number of iteration without any progress */
  itkSetMacro(MaximumIterationsWithoutProgress, SizeValueType);

  /** Set the maximum step size.
   *
   *  When SetScalesEstimator is called by user, the optimizer will compute
   *  learning rates as
   *      m_MaximumNewtonStepSizeInPhysicalUnits /
   *      m_ScalesEstimator->EstimateStepScale(newtonStep).
   *
   *  If SetMaximumNewtonStepSizeInPhysicalUnits is not called by user,
   *  m_MaximumNewtonStepSizeInPhysicalUnits defaults to
   *      lambda * m_ScalesEstimator->EstimateMaximumStepSize(),
   *
   *  where EstimateMaximumStepSize returns one voxel spacing and
   *  lambda may be in [1,5] according to our experience.
   */
  itkSetMacro(MaximumNewtonStepSizeInPhysicalUnits, TInternalComputationValueType);

  /** Get the most recent Newton step. */
  itkGetConstReferenceMacro( NewtonStep, DerivativeType );

  /**
   * Estimate the quasi-newton step over a given index range.
     This function is used in QuasiNewtonOptimizerv4EstimateNewtonStepThreaderTemplate class.
   */
  virtual void EstimateNewtonStepOverSubRange( const IndexRangeType& subrange );

protected:

  /** The maximum tolerable number of iteration without any progress */
  SizeValueType m_MaximumIterationsWithoutProgress;

  /** The information about the current step */
  ParametersType m_CurrentPosition;
  ParametersType m_OptimalStep;

  /** The information about the previous step */
  MeasureType    m_PreviousValue;
  ParametersType m_PreviousPosition;
  DerivativeType m_PreviousGradient;

  /** The best value so far and relevant information */
  MeasureType    m_BestValue;
  ParametersType m_BestPosition;
  SizeValueType  m_BestIteration;

  /** The Quasi-Newton step */
  DerivativeType m_NewtonStep;

  /** Warning message during Quasi-Newton step estimation */
  std::string m_NewtonStepWarning;

  /** The maximum Quasi-Newton step size to restrict learning rates. */
  TInternalComputationValueType m_MaximumNewtonStepSizeInPhysicalUnits;

  /** The Hessian with local support */
  HessianArrayType m_HessianArray;

  /** Valid flag for the Quasi-Newton steps */
  std::vector<bool> m_NewtonStepValidFlags;

  /** Estimate a Newton step */
  virtual void EstimateNewtonStep();

  /** Estimate the next Hessian and step with BFGS method.
   *  The details of the method are described at
   *  http://en.wikipedia.org/wiki/BFGS_method .
   */
  virtual bool ComputeHessianAndStepWithBFGS(IndexValueType location);

  /** Reset the Hessian to identity matrix and the Newton step to zeros. */
  virtual void ResetNewtonStep(IndexValueType location);

  /**
   * Combine a gradient step with a Newton step. The Newton step will be used
   * when it is valid. Otherwise the gradient step will be used.
   */
  void CombineGradientNewtonStep(void);

  /**
   *  Estimate and apply the learning rate(s) for a combined Newton step.
   *  A combined Newton step uses the Newton step by default and the gradient
   *  step when the Newton step is not valid.
   *
   *  The learning rate is less than 1.0 and is restricted by
   *  m_MaximumNewtonStepSizeInPhysicalUnits.
   */
  void ModifyCombinedNewtonStep();

  /**
   * Advance one step using the Quasi-Newton step. When the Newton step
   * is invalid, the gradient step will be used.
   */
  virtual void AdvanceOneStep(void);

  QuasiNewtonOptimizerv4Template();
  virtual ~QuasiNewtonOptimizerv4Template();

  virtual void PrintSelf(std::ostream & os, Indent indent) const;

private:
  QuasiNewtonOptimizerv4Template(const Self &); //purposely not implemented
  void operator=(const Self &);                 //purposely not implemented

  /** Threader for Newton step estimation. */
  typename DomainThreader<ThreadedIndexedContainerPartitioner, Self>::Pointer m_EstimateNewtonStepThreader;
};

/** This helps to meet backward compatibility */
typedef QuasiNewtonOptimizerv4Template<double> QuasiNewtonOptimizerv4;

} // end namespace itk

#ifndef ITK_MANUAL_INSTANTIATION
#include "itkQuasiNewtonOptimizerv4.hxx"
#endif

#endif