/usr/include/ITK-4.5/itkQuasiNewtonOptimizerv4.hxx is in libinsighttoolkit4-dev 4.5.0-3.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 | /*=========================================================================
*
* Copyright Insight Software Consortium
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0.txt
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
*=========================================================================*/
#ifndef __itkQuasiNewtonOptimizerv4_hxx
#define __itkQuasiNewtonOptimizerv4_hxx
#include "itkQuasiNewtonOptimizerv4.h"
#include "itkQuasiNewtonOptimizerv4EstimateNewtonStepThreader.h"
namespace itk
{
template<typename TInternalComputationValueType>
QuasiNewtonOptimizerv4Template<TInternalComputationValueType>
::QuasiNewtonOptimizerv4Template()
{
this->m_MaximumIterationsWithoutProgress = 30;
this->m_LearningRate = NumericTraits<TInternalComputationValueType>::One;
// m_MaximumNewtonStepSizeInPhysicalUnits is used for automatic learning
// rate estimation. it may be initialized either by calling
// SetMaximumNewtonStepSizeInPhysicalUnits manually or by using m_ScalesEstimator
// automatically. and the former has higher priority than the latter.
this->m_MaximumNewtonStepSizeInPhysicalUnits = NumericTraits<TInternalComputationValueType>::Zero;
/** Threader for Quasi-Newton method */
typedef QuasiNewtonOptimizerv4EstimateNewtonStepThreaderTemplate<TInternalComputationValueType> OptimizerType;
typedef typename OptimizerType::Pointer OptimizerPointer;
OptimizerPointer estimateNewtonStepThreader = OptimizerType::New();
this->m_EstimateNewtonStepThreader = estimateNewtonStepThreader;
}
template<typename TInternalComputationValueType>
QuasiNewtonOptimizerv4Template<TInternalComputationValueType>
::~QuasiNewtonOptimizerv4Template()
{
}
template<typename TInternalComputationValueType>
void
QuasiNewtonOptimizerv4Template<TInternalComputationValueType>
::PrintSelf(std::ostream & os, Indent indent) const
{
Superclass::PrintSelf(os, indent);
}
template<typename TInternalComputationValueType>
void
QuasiNewtonOptimizerv4Template<TInternalComputationValueType>
::StartOptimization( bool doOnlyInitialization )
{
itkDebugMacro("StartOptimization");
const SizeValueType numPara = this->m_Metric->GetNumberOfParameters();
const SizeValueType numLocalPara = this->m_Metric->GetNumberOfLocalParameters();
const SizeValueType numLocals = this->m_Metric->GetNumberOfParameters() / numLocalPara;
/* Set up the data for Quasi-Newton method */
this->m_NewtonStep.SetSize(numPara);
this->m_NewtonStepValidFlags.resize(numLocals);
this->m_HessianArray.resize(numLocals);
for (SizeValueType loc=0; loc<numLocals; loc++)
{
this->m_HessianArray[loc].SetSize(numLocalPara, numLocalPara);
}
if ( this->m_ScalesEstimator.IsNotNull() )
{
if ( this->m_MaximumNewtonStepSizeInPhysicalUnits <=
NumericTraits<TInternalComputationValueType>::epsilon())
{
// Newton step size might be bigger than one voxel spacing.
// emperically, we set it to 1~5 voxel spacings.
this->m_MaximumNewtonStepSizeInPhysicalUnits =
3.0 * this->m_ScalesEstimator->EstimateMaximumStepSize();
}
}
/* Must call the superclass version for basic validation, setup,
* and to start the optimization loop. */
Superclass::StartOptimization( doOnlyInitialization );
}
template<typename TInternalComputationValueType>
void
QuasiNewtonOptimizerv4Template<TInternalComputationValueType>
::AdvanceOneStep(void)
{
itkDebugMacro("AdvanceOneStep");
const SizeValueType numPara = this->m_Metric->GetNumberOfParameters();
this->m_CurrentPosition = this->m_Metric->GetParameters();
if (this->GetCurrentIteration() == 0)
{
// initialize some information
m_PreviousValue = this->GetCurrentMetricValue();
m_PreviousPosition = this->GetCurrentPosition();
m_PreviousGradient = this->GetGradient();
m_BestValue = this->m_CurrentMetricValue;
m_BestPosition = this->m_CurrentPosition;
m_BestIteration = this->GetCurrentIteration();
}
else if (m_BestValue > this->m_CurrentMetricValue)
{
// store the best value and related information
m_BestValue = this->m_CurrentMetricValue;
m_BestPosition = this->m_CurrentPosition;
m_BestIteration = this->GetCurrentIteration();
}
if ( this->GetCurrentIteration() - m_BestIteration
> m_MaximumIterationsWithoutProgress )
{
ParametersType backStep;
backStep = m_BestPosition - this->m_Metric->GetParameters();
this->m_Metric->UpdateTransformParameters( backStep );
this->m_CurrentPosition = this->m_BestPosition;
this->m_CurrentMetricValue = this->m_BestValue;
this->m_StopCondition = Superclass::STEP_TOO_SMALL;
this->m_StopConditionDescription << "Optimization stops after "
<< this->GetCurrentIteration()
<< " iterations since"
<< " there is no progress in the last "
<< m_MaximumIterationsWithoutProgress
<< " steps." << std::endl
<< " The best value is from Iteration "
<< m_BestIteration << ".";
this->StopOptimization();
return;
}
if (this->GetCurrentIteration() > 0)
{
ParametersType lastStep(numPara);
lastStep = this->m_CurrentPosition - this->m_PreviousPosition;
if (lastStep.squared_magnitude() <
NumericTraits<TInternalComputationValueType>::epsilon())
{
this->m_StopCondition = Superclass::STEP_TOO_SMALL;
this->m_StopConditionDescription << "Optimization stops after "
<< this->GetCurrentIteration()
<< " iterations since"
<< " the last step is almost zero.";
this->StopOptimization();
return;
}
}
this->EstimateNewtonStep();
/** Save for the next iteration */
m_PreviousValue = this->GetCurrentMetricValue();
m_PreviousPosition = this->GetCurrentPosition();
m_PreviousGradient = this->GetGradient();
this->CombineGradientNewtonStep();
this->ModifyCombinedNewtonStep();
try
{
/* Pass graident to transform and let it do its own updating */
this->m_Metric->UpdateTransformParameters( this->m_NewtonStep );
}
catch ( ExceptionObject & err )
{
this->m_StopCondition = Superclass::UPDATE_PARAMETERS_ERROR;
this->m_StopConditionDescription << "UpdateTransformParameters error";
this->StopOptimization();
// Pass exception to caller
throw err;
}
this->InvokeEvent( IterationEvent() );
}
template<typename TInternalComputationValueType>
void
QuasiNewtonOptimizerv4Template<TInternalComputationValueType>
::CombineGradientNewtonStep()
{
const SizeValueType numLocalPara = this->m_Metric->GetNumberOfLocalParameters();
const SizeValueType numLocals = this->m_Metric->GetNumberOfParameters() / numLocalPara;
bool validNewtonStepExists = false;
for (SizeValueType loc=0; loc<numLocals; loc++)
{
if (this->m_NewtonStepValidFlags[loc])
{
validNewtonStepExists = true;
break;
}
}
TInternalComputationValueType ratio = NumericTraits<TInternalComputationValueType>::One;
if (validNewtonStepExists)
{
TInternalComputationValueType gradStepScale
= this->m_ScalesEstimator->EstimateStepScale(this->m_Gradient);
TInternalComputationValueType newtonStepScale
= this->m_ScalesEstimator->EstimateStepScale(this->m_NewtonStep);
if (gradStepScale > NumericTraits<TInternalComputationValueType>::epsilon())
{
ratio = newtonStepScale / gradStepScale;
}
}
for (SizeValueType loc=0; loc<numLocals; loc++)
{
if (!this->m_NewtonStepValidFlags[loc])
{
// Using the Gradient step
IndexValueType offset = loc * numLocalPara;
for (SizeValueType p=0; p<numLocalPara; p++)
{
this->m_NewtonStep[offset+p] = this->m_Gradient[offset+p] * ratio;
}
}
}
}
template<typename TInternalComputationValueType>
void
QuasiNewtonOptimizerv4Template<TInternalComputationValueType>
::ModifyCombinedNewtonStep()
{
// If m_ScalesEstimator is not set, we will not change the Newton step.
if (this->m_ScalesEstimator.IsNull())
{
return;
}
TInternalComputationValueType stepScale
= this->m_ScalesEstimator->EstimateStepScale(this->m_NewtonStep);
if (stepScale <= NumericTraits<TInternalComputationValueType>::epsilon())
{
this->m_LearningRate = NumericTraits<TInternalComputationValueType>::One;
}
else
{
this->m_LearningRate = this->m_MaximumNewtonStepSizeInPhysicalUnits / stepScale;
if (this->m_LearningRate > NumericTraits<TInternalComputationValueType>::One)
{
// learning rate is at most 1 for a newton step
this->m_LearningRate = NumericTraits<TInternalComputationValueType>::One;
}
}
if (vcl_abs(this->m_LearningRate - NumericTraits<TInternalComputationValueType>::One)
> 0.01)
{
this->m_NewtonStep *= this->m_LearningRate;
}
}
template<typename TInternalComputationValueType>
void
QuasiNewtonOptimizerv4Template<TInternalComputationValueType>
::ResetNewtonStep(IndexValueType loc)
{
const SizeValueType numLocalPara = this->m_Metric->GetNumberOfLocalParameters();
// Initialize Hessian to identity matrix
m_HessianArray[loc].Fill(NumericTraits<TInternalComputationValueType>::Zero);
for (unsigned int i=0; i<numLocalPara; i++)
{
m_HessianArray[loc][i][i] = NumericTraits<TInternalComputationValueType>::One; //identity matrix
}
IndexValueType offset = loc * numLocalPara;
for (SizeValueType p=0; p<numLocalPara; p++)
{
// Set to zero for invalid Newton steps.
// They must be defined since they will be used during step scale estimation.
this->m_NewtonStep[offset+p] = NumericTraits<TInternalComputationValueType>::Zero;
}
}
template<typename TInternalComputationValueType>
void
QuasiNewtonOptimizerv4Template<TInternalComputationValueType>
::EstimateNewtonStep()
{
IndexRangeType fullrange;
fullrange[0] = 0;
fullrange[1] = this->m_Gradient.GetSize()-1; //range is inclusive
/* Perform the modification either with or without threading */
if( this->m_Gradient.GetSize() > 10000 )
{
/* This ends up calling EstimateNewtonStepOverSubRange from each thread */
this->m_EstimateNewtonStepThreader->Execute( this, fullrange );
}
else
{
this->EstimateNewtonStepOverSubRange( fullrange );
}
}
template<typename TInternalComputationValueType>
void
QuasiNewtonOptimizerv4Template<TInternalComputationValueType>
::EstimateNewtonStepOverSubRange( const IndexRangeType& subrange )
{
const SizeValueType numLocalPara = this->m_Metric->GetNumberOfLocalParameters();
IndexValueType low = subrange[0] / numLocalPara;
IndexValueType high = subrange[1] / numLocalPara;
// let us denote the i-th thread's sub range by subrange_i
// we assume subrange_i[1] + 1 = subrange_(i+1)[0] .
// if the subrange_i doesn't start with the multiple of numLocalPara,
// we assign this starting block of local parameters to thread_i
// if the subrange_i doesn't end with the multiple of numLocalPara,
// we assign this ending block of local parameters to thread_(i+1) .
if( (subrange[1]+1) % numLocalPara != 0 )
{
high--;
}
for (IndexValueType loc = low; loc <= high; loc++)
{
if (this->GetCurrentIteration() == 0)
{
this->m_NewtonStepValidFlags[loc] = false;
}
else
{
this->m_NewtonStepValidFlags[loc] = this->ComputeHessianAndStepWithBFGS(loc);
}
if (!this->m_NewtonStepValidFlags[loc])
{
this->ResetNewtonStep(loc);
}
} // end for loc
}
template<typename TInternalComputationValueType>
bool
QuasiNewtonOptimizerv4Template<TInternalComputationValueType>
::ComputeHessianAndStepWithBFGS(IndexValueType loc)
{
if (this->GetCurrentIteration() == 0)
{
return false;
}
const SizeValueType numLocalPara = this->m_Metric->GetNumberOfLocalParameters();
IndexValueType offset = loc * numLocalPara;
ParametersType dx(numLocalPara); //delta of position x: x_k+1 - x_k
DerivativeType dg(numLocalPara); //delta of gradient: g_k+1 - g_k
DerivativeType edg(numLocalPara); //estimated delta of gradient: hessian_k * dx
for (SizeValueType p=0; p<numLocalPara; p++)
{
dx[p] = this->m_CurrentPosition[offset+p] - this->m_PreviousPosition[offset+p];
// gradient is already negated
dg[p] = this->m_PreviousGradient[offset+p] - this->m_Gradient[offset+p];
}
edg = this->m_HessianArray[loc] * dx;
TInternalComputationValueType dot_dg_dx = inner_product(dg, dx);
TInternalComputationValueType dot_edg_dx = inner_product(edg, dx);
if (vcl_abs(dot_dg_dx) <= NumericTraits<TInternalComputationValueType>::epsilon()
|| vcl_abs(dot_edg_dx) <= NumericTraits<TInternalComputationValueType>::epsilon())
{
return false;
}
vnl_matrix<TInternalComputationValueType> plus = outer_product(dg, dg) / dot_dg_dx;
vnl_matrix<TInternalComputationValueType> minus = outer_product(edg, edg) / dot_edg_dx;
vnl_matrix<TInternalComputationValueType> newHessian = this->m_HessianArray[loc] + plus - minus;
this->m_HessianArray[loc] = newHessian;
for (SizeValueType p=0; p<numLocalPara; p++)
{
if (newHessian[p][p] < 0)
{
return false;
}
}
TInternalComputationValueType threshold
= NumericTraits<TInternalComputationValueType>::epsilon();
if ( vcl_abs(vnl_determinant(newHessian)) <= threshold )
{
return false;
}
else
{
vnl_matrix<TInternalComputationValueType> hessianInverse = vnl_matrix_inverse<TInternalComputationValueType>(newHessian);
DerivativeType gradient(numLocalPara);
DerivativeType newtonStep(numLocalPara);
for (SizeValueType p=0; p<numLocalPara; p++)
{
gradient[p] = this->m_Gradient[offset+p];
}
// gradient is already negated
newtonStep = hessianInverse * gradient;
for (SizeValueType p=0; p<numLocalPara; p++)
{
this->m_NewtonStep[offset+p] = newtonStep[p];
}
}
return true;
}
} // end namespace itk
#endif
|