This file is indexed.

/usr/include/ITK-4.5/itkQuickPropLearningRule.hxx is in libinsighttoolkit4-dev 4.5.0-3.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
/*=========================================================================
 *
 *  Copyright Insight Software Consortium
 *
 *  Licensed under the Apache License, Version 2.0 (the "License");
 *  you may not use this file except in compliance with the License.
 *  You may obtain a copy of the License at
 *
 *         http://www.apache.org/licenses/LICENSE-2.0.txt
 *
 *  Unless required by applicable law or agreed to in writing, software
 *  distributed under the License is distributed on an "AS IS" BASIS,
 *  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 *  See the License for the specific language governing permissions and
 *  limitations under the License.
 *
 *=========================================================================*/
#ifndef __itkQuickPropLearningRule_hxx
#define __itkQuickPropLearningRule_hxx

#include "itkQuickPropLearningRule.h"
#include "vnl/vnl_matrix.h"

namespace itk
{
namespace Statistics
{
template<typename LayerType, typename TTargetVector>
QuickPropLearningRule <LayerType,TTargetVector>
::QuickPropLearningRule()
{
  m_Momentum = 0.9; //Default
  m_Max_Growth_Factor = 1.75;
  m_Decay = -0.0001;
  m_SplitEpsilon = 1;
  m_Epsilon = 0.55;
  m_Threshold = 0.0;
  m_SigmoidPrimeOffset = 0;
  m_SplitEpsilon = 0;
}

template<typename LayerType, typename TTargetVector>
void
QuickPropLearningRule<LayerType,TTargetVector>
::Learn(LayerType* layer, ValueType itkNotUsed(lr))
{
  typename LayerType::WeightSetType::Pointer inputweightset = layer->GetModifiableInputWeightSet();

  //For Quickprop
  typename LayerType::ValuePointer DWvalues_m_1 = inputweightset->GetPrevDWValues();
  typename LayerType::ValuePointer Delvalues_m_1 = inputweightset->GetPrevDeltaValues();
  typename LayerType::ValuePointer Delvalues = inputweightset->GetTotalDeltaValues();
  typename LayerType::ValuePointer weightvalues = inputweightset->GetWeightValues();

  unsigned int input_cols = inputweightset->GetNumberOfInputNodes();
  unsigned int input_rows = inputweightset->GetNumberOfOutputNodes();

  vnl_matrix<ValueType> DW_m_1(input_rows, input_cols);
  DW_m_1.fill(0);
  vnl_matrix<ValueType> Del_m_1(input_rows, input_cols);
  Del_m_1.fill(0);

  DW_m_1.copy_in(DWvalues_m_1);
  Del_m_1.copy_in(Delvalues_m_1);

  vnl_matrix<ValueType> DW_temp(inputweightset->GetNumberOfOutputNodes(),
                                           inputweightset->GetNumberOfInputNodes());
  vnl_matrix<ValueType> weights(inputweightset->GetNumberOfOutputNodes(),
                                           inputweightset->GetNumberOfInputNodes());
  DW_temp.copy_in(Delvalues);
  weights.copy_in(weightvalues);

  vnl_matrix<ValueType> temp(inputweightset->GetNumberOfOutputNodes(),
                                        inputweightset->GetNumberOfInputNodes());
  temp.fill(0);

  //get bias
  vnl_vector<ValueType> delb;
  delb.set_size(inputweightset->GetNumberOfOutputNodes());
  delb.fill(0);
  vnl_vector<ValueType> delb_m_1;
  delb_m_1.set_size(inputweightset->GetNumberOfOutputNodes());
  delb_m_1.fill(0);
  vnl_vector<ValueType> DB_m_1;
  DB_m_1.set_size(inputweightset->GetNumberOfOutputNodes());
  DB_m_1.fill(0);

  vnl_vector<ValueType> DB;
  DB.set_size(inputweightset->GetNumberOfOutputNodes());
  DB.fill(0);

  typename LayerType::ValuePointer deltaBValues = inputweightset->GetTotalDeltaBValues();
  delb.copy_in(deltaBValues);
  typename LayerType::ValuePointer prevDeltaBValues = inputweightset->GetPrevDeltaBValues();
  delb_m_1.copy_in(prevDeltaBValues);
  typename LayerType::ValuePointer prevDBValues = inputweightset->GetPrevDBValues();
  DB_m_1.copy_in(prevDBValues);


  DW_temp.set_column(input_cols-1,delb);
  Del_m_1.set_column(input_cols-1,delb_m_1);
  DW_m_1.set_column(input_cols-1,DB_m_1);

  ValueType step_val;
  float shrink_factor =(float)m_Max_Growth_Factor/(1.0+ m_Max_Growth_Factor);

  for(unsigned int i=0; i<input_rows; i++)
    {
    for(unsigned int j=0; j<input_cols; j++)
      {
      step_val=0;
      DW_temp(i,j) += m_Decay*weights(i,j);
      if(DW_m_1(i,j)>m_Threshold)
        {
        if(DW_temp(i,j)>0.0)
          {
          step_val += (m_Epsilon *DW_temp(i,j));
          }
        if(DW_temp(i,j) >(shrink_factor*Del_m_1(i,j)))
          {
          step_val += (m_Max_Growth_Factor*DW_m_1(i,j));
          }
        else
          {
          step_val += ((DW_temp(i,j)/(Del_m_1(i,j)-DW_temp(i,j)))*DW_m_1(i,j));
          }
        }
      else if(DW_m_1(i,j)< -m_Threshold)
        {
        if(DW_temp(i,j)<0.0)
          {
          step_val += (m_Epsilon *DW_temp(i,j));
          }
        if(DW_temp(i,j) <(shrink_factor *Del_m_1(i,j)))
          {
          step_val += (m_Max_Growth_Factor *DW_m_1(i,j));
          }
        else
          {
          step_val += ((DW_temp(i,j)/(Del_m_1(i,j)-DW_temp(i,j)))*DW_m_1(i,j));
          }
        }
      else
        {
        step_val += (m_Epsilon*DW_temp(i,j))+(m_Momentum *DW_m_1(i,j));
        }
      temp(i,j)=step_val;
      }// inner for
   }//outer for
  DB=temp.get_column(input_cols-1);
  inputweightset->SetDBValues(DB.data_block());
  inputweightset->SetDWValues(temp.data_block());
}

template<typename LayerType, typename TTargetVector>
void
QuickPropLearningRule<LayerType,TTargetVector>
::Learn(LayerType* itkNotUsed(layer), TTargetVector itkNotUsed(errors),ValueType itkNotUsed(lr))
{
}

/** Print the object */
template<typename LayerType, typename TTargetVector>
void
QuickPropLearningRule<LayerType,TTargetVector>
::PrintSelf( std::ostream& os, Indent indent ) const
{
  os << indent << "QuickPropLearningRule(" << this << ")" << std::endl;
  os << indent << "m_Momentum = " << m_Momentum << std::endl;
  os << indent << "m_Max_Growth_Factor = " << m_Max_Growth_Factor << std::endl;
  os << indent << "m_Decay = " << m_Decay << std::endl;
  os << indent << "m_Threshold = " << m_Threshold << std::endl;
  os << indent << "m_Epsilon = " << m_Epsilon << std::endl;
  os << indent << "m_SigmoidPrimeOffset = " << m_SigmoidPrimeOffset << std::endl;
  os << indent << "m_SplitEpsilon = " << m_SplitEpsilon << std::endl;
  Superclass::PrintSelf( os, indent );
}

} // end namespace Statistics
} // end namespace itk

#endif