/usr/include/ITK-4.5/itkRegistrationParameterScalesEstimator.hxx is in libinsighttoolkit4-dev 4.5.0-3.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 | /*=========================================================================
*
* Copyright Insight Software Consortium
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0.txt
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
*=========================================================================*/
#ifndef __itkRegistrationParameterScalesEstimator_hxx
#define __itkRegistrationParameterScalesEstimator_hxx
#include "itkRegistrationParameterScalesEstimator.h"
#include "itkCompositeTransform.h"
#include "itkPointSet.h"
#include "itkObjectToObjectMetric.h"
namespace itk
{
template< typename TMetric >
RegistrationParameterScalesEstimator< TMetric >
::RegistrationParameterScalesEstimator()
{
// estimate parameter scales of the moving transform
this->m_TransformForward = true;
// number for random sampling
this->m_NumberOfRandomSamples = 0;
// default sampling strategy
this->m_SamplingStrategy = FullDomainSampling;
// the default radius of the central region for sampling
this->m_CentralRegionRadius = 5;
// the metric object must be set before EstimateScales()
}
/** Estimate the trusted scale for steps. It returns the voxel spacing. */
template< typename TMetric >
typename RegistrationParameterScalesEstimator< TMetric >::FloatType
RegistrationParameterScalesEstimator< TMetric >
::EstimateMaximumStepSize()
{
this->CheckAndSetInputs();
const VirtualSpacingType& spacing = this->m_Metric->GetVirtualSpacing();
const SizeValueType dim = this->GetDimension();
FloatType minSpacing = NumericTraits<FloatType>::max();
for (SizeValueType d=0; d<dim; d++)
{
if (minSpacing > spacing[d])
{
minSpacing = spacing[d];
}
}
return minSpacing;
}
/** Validate and set metric and its transforms. */
template< typename TMetric >
bool
RegistrationParameterScalesEstimator< TMetric >
::CheckAndSetInputs()
{
if (m_Metric.IsNull())
{
itkExceptionMacro("RegistrationParameterScalesEstimator: the metric is NULL");
}
if (this->m_Metric->GetMovingTransform() == NULL)
{
itkExceptionMacro("RegistrationParameterScalesEstimator: this->m_MovingTransform in the metric is NULL.");
}
if (this->m_Metric->GetFixedTransform() == NULL)
{
itkExceptionMacro("RegistrationParameterScalesEstimator: this->m_FixedTransform in the metric is NULL.");
}
return true;
}
/** Get the transform being estimated scales for. */
template< typename TMetric >
const TransformBaseTemplate<typename TMetric::MeasureType> *
RegistrationParameterScalesEstimator< TMetric >
::GetTransform()
{
if (m_TransformForward)
{
return this->m_Metric->GetMovingTransform();
}
else
{
return this->m_Metric->GetFixedTransform();
}
}
/** Get the dimension of the target transformed to. */
template< typename TMetric >
itk::SizeValueType
RegistrationParameterScalesEstimator< TMetric >
::GetDimension()
{
if (m_TransformForward)
{
return MovingDimension;
}
else
{
return FixedDimension;
}
}
/** Check if the transform being optimized has local support. */
template< typename TMetric >
bool
RegistrationParameterScalesEstimator< TMetric >
::IsDisplacementFieldTransform()
{
if( this->m_TransformForward && this->m_Metric->GetMovingTransform()->GetTransformCategory() == MovingTransformType::DisplacementField )
{
return true;
}
else if( !this->m_TransformForward && this->m_Metric->GetFixedTransform()->GetTransformCategory() == FixedTransformType::DisplacementField )
{
return true;
}
return false;
}
template< typename TMetric >
bool
RegistrationParameterScalesEstimator< TMetric >
::IsBSplineTransform()
{
bool isBSplineTransform = false;
if( this->m_TransformForward && this->m_Metric->GetMovingTransform()->GetTransformCategory() == MovingTransformType::BSpline )
{
isBSplineTransform = true;
}
else if( !this->m_TransformForward && this->m_Metric->GetFixedTransform()->GetTransformCategory() == FixedTransformType::BSpline )
{
isBSplineTransform = true;
}
// We need to check for the case where the fixed/moving transform is
// a composite transform with optimizing B-spline transforms.
// The CompositeTransform class function GetTransformCategory() handles
// this scenario for displacement field transforms but we need to duplicate
// the analogous b-spline case here.
if( !isBSplineTransform )
{
if( this->m_TransformForward )
{
typedef CompositeTransform<FloatType, MovingDimension> CompositeTransformType;
typename CompositeTransformType::Pointer compositeTransform = dynamic_cast<CompositeTransformType *>( const_cast<MovingTransformType *>( this->m_Metric->GetMovingTransform() ) );
if( compositeTransform )
{
isBSplineTransform = true;
for( signed long tind = static_cast<signed long>( compositeTransform->GetNumberOfTransforms() ) - 1; tind >= 0; tind-- )
{
if( compositeTransform->GetNthTransformToOptimize( tind ) &&
( compositeTransform->GetNthTransformConstPointer( tind )->GetTransformCategory() != MovingTransformType::BSpline ) )
{
isBSplineTransform = false;
break;
}
}
}
}
else // !this->m_TransformForward
{
typedef CompositeTransform<FloatType, FixedDimension> CompositeTransformType;
typename CompositeTransformType::Pointer compositeTransform = dynamic_cast<CompositeTransformType *>( const_cast<FixedTransformType *>( this->m_Metric->GetFixedTransform() ) );
if( compositeTransform )
{
isBSplineTransform = true;
for( signed long tind = static_cast<signed long>( compositeTransform->GetNumberOfTransforms() ) - 1; tind >= 0; tind-- )
{
if( compositeTransform->GetNthTransformToOptimize( tind ) &&
( compositeTransform->GetNthTransformConstPointer( tind )->GetTransformCategory() != FixedTransformType::BSpline ) )
{
isBSplineTransform = false;
break;
}
}
}
}
}
return isBSplineTransform;
}
template< typename TMetric >
bool
RegistrationParameterScalesEstimator< TMetric >
::TransformHasLocalSupportForScalesEstimation()
{
if( this->IsDisplacementFieldTransform() || this->IsBSplineTransform() )
{
return true;
}
else
{
return false;
}
}
/** Get the number of scales. */
template< typename TMetric >
SizeValueType
RegistrationParameterScalesEstimator< TMetric >
::GetNumberOfLocalParameters()
{
if (this->GetTransformForward())
{
return this->m_Metric->GetMovingTransform()->GetNumberOfLocalParameters();
}
else
{
return this->m_Metric->GetFixedTransform()->GetNumberOfLocalParameters();
}
}
/** Update the transform with a change in parameters. */
template< typename TMetric >
void
RegistrationParameterScalesEstimator< TMetric >
::UpdateTransformParameters(const ParametersType &deltaParameters)
{
// Apply the delta parameters to the transform
if (this->m_TransformForward)
{
typename MovingTransformType::Pointer movingTransform = const_cast<MovingTransformType *>(this->m_Metric->GetMovingTransform());
ParametersType &step = const_cast<ParametersType &>(deltaParameters);
movingTransform->UpdateTransformParameters(step);
}
else
{
typename FixedTransformType::Pointer fixedTransform = const_cast<FixedTransformType *>(this->m_Metric->GetFixedTransform());
ParametersType &step = const_cast<ParametersType &>(deltaParameters);
fixedTransform->UpdateTransformParameters(step);
}
}
/** Transform a physical point to a new physical point.
* We want to compute shift in physical space so that the scales is not
* sensitive to spacings and directions of voxel sampling.
*/
template< typename TMetric >
template< typename TTargetPointType >
void
RegistrationParameterScalesEstimator< TMetric >
::TransformPoint(const VirtualPointType &point, TTargetPointType &mappedPoint)
{
if (this->GetTransformForward())
{
mappedPoint = this->m_Metric->GetMovingTransform()->TransformPoint( point );
}
else
{
mappedPoint = this->m_Metric->GetFixedTransform()->TransformPoint( point );
}
}
/** Get the squared norms of the transform Jacobians w.r.t parameters at a point */
template< typename TMetric >
void
RegistrationParameterScalesEstimator< TMetric >
::ComputeSquaredJacobianNorms( const VirtualPointType & point, ParametersType & squareNorms )
{
JacobianType jacobian;
const SizeValueType numPara = this->GetNumberOfLocalParameters();
const SizeValueType dim = this->GetDimension();
if (this->GetTransformForward())
{
this->m_Metric->GetMovingTransform()->ComputeJacobianWithRespectToParameters(point, jacobian);
for (SizeValueType p=0; p<numPara; p++)
{
squareNorms[p] = NumericTraits< typename ParametersType::ValueType >::Zero;
for (SizeValueType d=0; d<dim; d++)
{
squareNorms[p] += jacobian[d][p] * jacobian[d][p];
}
}
}
else
{
this->m_Metric->GetFixedTransform()->ComputeJacobianWithRespectToParameters(point, jacobian);
for (SizeValueType p=0; p<numPara; p++)
{
squareNorms[p] = NumericTraits< typename ParametersType::ValueType >::Zero;
for (SizeValueType d=0; d<dim; d++)
{
squareNorms[p] += jacobian[d][p] * jacobian[d][p];
}
}
}
}
/** Sample the virtual domain with phyical points
* and store the results into this->m_SamplePoints.
*/
template< typename TMetric >
void
RegistrationParameterScalesEstimator< TMetric >
::SampleVirtualDomain()
{
if ( !(this->m_SamplingTime < this->GetTimeStamp()) && !(this->m_SamplingTime < this->m_Metric->GetVirtualDomainTimeStamp()) )
{
return;
}
if( ! this->m_Metric->SupportsArbitraryVirtualDomainSamples() && ! this->m_VirtualDomainPointSet )
{
itkExceptionMacro(" The assigned metric does not support aribitrary virtual domain sampling, "
" yet this->m_VirtualDomainPointSet has not been assigned. " );
}
if (m_SamplingStrategy == VirtualDomainPointSetSampling)
{
this->SampleVirtualDomainWithPointSet();
}
else if (m_SamplingStrategy == CornerSampling)
{
this->SampleVirtualDomainWithCorners();
}
else if (m_SamplingStrategy == RandomSampling)
{
this->SampleVirtualDomainRandomly();
}
else if (m_SamplingStrategy == CentralRegionSampling)
{
this->SampleVirtualDomainWithCentralRegion();
}
else
{
this->SampleVirtualDomainFully();
}
// Sanity check
if( this->m_SamplePoints.size() == 0 )
{
itkExceptionMacro("No sample points were created.");
}
this->Modified();
this->m_SamplingTime = this->GetTimeStamp();
}
/**
* Set the sampling strategy automatically for scales estimation.
*/
template< typename TMetric >
void
RegistrationParameterScalesEstimator< TMetric >
::SetScalesSamplingStrategy()
{
if( this->m_VirtualDomainPointSet )
{
this->SetSamplingStrategy(VirtualDomainPointSetSampling);
}
else if( this->TransformHasLocalSupportForScalesEstimation() )
{
this->SetSamplingStrategy(CentralRegionSampling);
}
else if (this->CheckGeneralAffineTransform())
{
this->SetSamplingStrategy(CornerSampling);
}
else
{
this->SetSamplingStrategy(RandomSampling);
this->SetNumberOfRandomSamples( SizeOfSmallDomain );
}
}
/**
* Set the sampling strategy automatically for step scale estimation.
*/
template< typename TMetric >
void
RegistrationParameterScalesEstimator< TMetric >
::SetStepScaleSamplingStrategy()
{
if( this->m_VirtualDomainPointSet )
{
this->SetSamplingStrategy(VirtualDomainPointSetSampling);
}
else if( this->TransformHasLocalSupportForScalesEstimation() )
{
// Have to use FullDomainSampling for a transform with local support
this->SetSamplingStrategy(FullDomainSampling);
}
else if (this->CheckGeneralAffineTransform())
{
this->SetSamplingStrategy(CornerSampling);
}
else
{
this->SetSamplingStrategy(RandomSampling);
this->SetNumberOfRandomSamples( SizeOfSmallDomain );
}
}
/**
* Check if the transform is a general affine transform that maps a line
* segment to a line segment.
*/
template< typename TMetric >
bool
RegistrationParameterScalesEstimator< TMetric >
::CheckGeneralAffineTransform()
{
if (this->GetTransformForward())
{
return this->CheckGeneralAffineTransformTemplated<MovingTransformType>();
}
else
{
return this->CheckGeneralAffineTransformTemplated<FixedTransformType>();
}
}
/**
* The templated version of CheckGeneralAffineTransform to check if the
* transform is a general affine transform that maps a line segment to
* a line segment.
*
* Examples are subclasses of MatrixOffsetTransformBaseType, TranslationTransform,
* Rigid3DPerspectiveTransform, IdentityTransform, etc.
*/
template< typename TMetric >
template< typename TTransform >
bool
RegistrationParameterScalesEstimator< TMetric >
::CheckGeneralAffineTransformTemplated()
{
typedef typename TTransform::ScalarType ScalarType;
const SizeValueType InputSpaceDimension = TTransform::InputSpaceDimension;
const SizeValueType OutputSpaceDimension = TTransform::OutputSpaceDimension;
typedef MatrixOffsetTransformBase<ScalarType, InputSpaceDimension, OutputSpaceDimension>
MatrixOffsetTransformBaseType;
typedef TranslationTransform<ScalarType, InputSpaceDimension>
TranslationTransformType;
typedef IdentityTransform<ScalarType, InputSpaceDimension>
IdentityTransformType;
typedef Rigid3DPerspectiveTransform<ScalarType>
Rigid3DPerspectiveTransformType;
const TransformBaseTemplate<typename TMetric::MeasureType> *transform = this->GetTransform();
if ( dynamic_cast< const MatrixOffsetTransformBaseType * >( transform ) != NULL
|| dynamic_cast< const TranslationTransformType * >( transform ) != NULL
|| dynamic_cast< const IdentityTransformType * >( transform ) != NULL
|| dynamic_cast< const Rigid3DPerspectiveTransformType * >( transform ) != NULL
)
{
return true;
}
return false;
}
/**
* Get the index of the virtual image center.
*/
template< typename TMetric >
typename RegistrationParameterScalesEstimator< TMetric >::VirtualIndexType
RegistrationParameterScalesEstimator< TMetric >
::GetVirtualDomainCentralIndex()
{
VirtualRegionType region = this->m_Metric->GetVirtualRegion();
const SizeValueType dim = this->GetDimension();
VirtualIndexType lowerIndex, upperIndex, centralIndex;
lowerIndex = region.GetIndex();
upperIndex = region.GetUpperIndex();
for (SizeValueType d=0; d<dim; d++)
{
centralIndex[d] = (IndexValueType)((lowerIndex[d] + upperIndex[d])/2.0);
}
return centralIndex;
}
/**
* Get the region around the virtual image center.
*/
template< typename TMetric >
typename RegistrationParameterScalesEstimator< TMetric >::VirtualRegionType
RegistrationParameterScalesEstimator< TMetric >
::GetVirtualDomainCentralRegion()
{
VirtualIndexType centralIndex = this->GetVirtualDomainCentralIndex();
VirtualRegionType region = this->m_Metric->GetVirtualRegion();
const SizeValueType dim = this->GetDimension();
VirtualIndexType lowerIndex, upperIndex;
lowerIndex = region.GetIndex();
upperIndex = region.GetUpperIndex();
for (SizeValueType d=0; d<dim; d++)
{
if (lowerIndex[d] < centralIndex[d] - this->m_CentralRegionRadius)
{
lowerIndex[d] = centralIndex[d] - this->m_CentralRegionRadius;
}
if (upperIndex[d] > centralIndex[d] + this->m_CentralRegionRadius)
{
upperIndex[d] = centralIndex[d] + this->m_CentralRegionRadius;
}
}
VirtualRegionType centralRegion;
centralRegion.SetIndex(lowerIndex);
centralRegion.SetUpperIndex(upperIndex);
return centralRegion;
}
/**
* Sample the virtual domain with the voxels around the center.
*/
template< typename TMetric >
void
RegistrationParameterScalesEstimator< TMetric >
::SampleVirtualDomainWithCentralRegion()
{
VirtualRegionType centralRegion = this->GetVirtualDomainCentralRegion();
SampleVirtualDomainWithRegion(centralRegion);
}
/**
* Sample the virtual domain with all voxels inside a region.
*/
template< typename TMetric >
void
RegistrationParameterScalesEstimator< TMetric >
::SampleVirtualDomainWithRegion(VirtualRegionType region)
{
VirtualImageConstPointer image = this->m_Metric->GetVirtualImage();
const SizeValueType total = region.GetNumberOfPixels();
this->m_SamplePoints.resize(total);
/* Set up an iterator within the user specified virtual image region. */
typedef ImageRegionConstIteratorWithIndex<VirtualImageType> RegionIterator;
RegionIterator regionIter( image, region );
VirtualPointType point;
/* Iterate over the image */
SizeValueType count = 0;
regionIter.GoToBegin();
while( !regionIter.IsAtEnd() )
{
image->TransformIndexToPhysicalPoint( regionIter.GetIndex(), point );
this->m_SamplePoints[count] = point;
++regionIter;
++count;
}
}
/**
* Sample the virtual domain with the points at image corners.
* And store the results into this->m_SamplePoints.
*/
template< typename TMetric >
void
RegistrationParameterScalesEstimator< TMetric >
::SampleVirtualDomainWithCorners()
{
VirtualImageConstPointer image = this->m_Metric->GetVirtualImage();
VirtualRegionType region = this->m_Metric->GetVirtualRegion();
VirtualIndexType firstCorner = region.GetIndex();
VirtualIndexType corner;
VirtualPointType point;
VirtualSizeType size = region.GetSize();
const int cornerNumber = 1 << VirtualDimension; // 2^Dimension
this->m_SamplePoints.resize(cornerNumber);
for(int i=0; i<cornerNumber; i++)
{
int bit;
for (int d=0; d<VirtualDimension; d++)
{
bit = (int) (( i & (1 << d) ) != 0); // 0 or 1
corner[d] = firstCorner[d] + bit * (size[d] - 1);
}
image->TransformIndexToPhysicalPoint(corner, point);
this->m_SamplePoints[i] = point;
}
}
/**
* Sample the physical points of the virtual domain in a uniform random distribution.
*/
template< typename TMetric >
void
RegistrationParameterScalesEstimator< TMetric >
::SampleVirtualDomainRandomly()
{
VirtualImageConstPointer image = this->m_Metric->GetVirtualImage();
if (m_NumberOfRandomSamples == 0)
{
const SizeValueType total = this->m_Metric->GetVirtualRegion().GetNumberOfPixels();
if (total <= SizeOfSmallDomain)
{
this->m_NumberOfRandomSamples = total;
}
else
{
FloatType ratio = 1 + vcl_log((FloatType)total/SizeOfSmallDomain);
//ratio >= 1 since total/SizeOfSmallDomain > 1
this->m_NumberOfRandomSamples = static_cast<int>(SizeOfSmallDomain * ratio);
if (m_NumberOfRandomSamples > total)
{
this->m_NumberOfRandomSamples = total;
}
}
}
this->m_SamplePoints.resize(m_NumberOfRandomSamples);
// Set up a random iterator within the user specified virtual image region.
typedef ImageRandomConstIteratorWithIndex<VirtualImageType> RandomIterator;
RandomIterator randIter( image, this->m_Metric->GetVirtualRegion() );
VirtualPointType point;
randIter.SetNumberOfSamples( this->m_NumberOfRandomSamples );
randIter.GoToBegin();
for (SizeValueType i=0; i<m_NumberOfRandomSamples; i++)
{
image->TransformIndexToPhysicalPoint( randIter.GetIndex(), point );
this->m_SamplePoints[i] = point;
++randIter;
}
}
/**
* Sample the virtual domain using a point set.
*/
template< typename TMetric >
void
RegistrationParameterScalesEstimator< TMetric >
::SampleVirtualDomainWithPointSet()
{
/* The virtual domain point set must already be supplied */
if( ! this->m_VirtualDomainPointSet )
{
itkExceptionMacro("The virtual domain point set has not been set.");
}
if( this->m_VirtualDomainPointSet->GetNumberOfPoints() < 1 )
{
itkExceptionMacro("The virtual domain point set has no points.");
}
this->m_SamplePoints.resize( this->m_VirtualDomainPointSet->GetNumberOfPoints() );
typename VirtualPointSetType::PointsContainerConstIterator it( this->m_VirtualDomainPointSet->GetPoints()->Begin() );
SizeValueType count = 0;
while( it != this->m_VirtualDomainPointSet->GetPoints()->End() )
{
this->m_SamplePoints[count] = it.Value();
++count;
++it;
}
}
/**
* Sample the virtual domain fully with all pixels.
*/
template< typename TMetric >
void
RegistrationParameterScalesEstimator< TMetric >
::SampleVirtualDomainFully()
{
VirtualRegionType region = this->m_Metric->GetVirtualRegion();
this->SampleVirtualDomainWithRegion(region);
}
/**
* Print the information about this class.
*/
template< typename TMetric >
void
RegistrationParameterScalesEstimator< TMetric >
::PrintSelf(std::ostream& os, Indent indent) const
{
Superclass::PrintSelf(os,indent);
os << indent << "MetricType = " << std::endl;
os << indent << typeid(MetricType).name() << std::endl;
os << indent << "m_SamplePoints.size = " << std::endl;
os << indent << this->m_SamplePoints.size() << std::endl;
os << indent << "m_TransformForward = " << this->m_TransformForward << std::endl;
os << indent << "m_SamplingStrategy = " << this->m_SamplingStrategy << std::endl;
os << indent << "m_VirtualDomainPointSet = " << this->m_VirtualDomainPointSet.GetPointer() << std::endl;
}
} // namespace itk
#endif /* __itkRegistrationParameterScalesEstimator_txx */
|