/usr/include/ITK-4.5/itkRenyiEntropyThresholdCalculator.hxx is in libinsighttoolkit4-dev 4.5.0-3.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 | /*=========================================================================
*
* Copyright Insight Software Consortium
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0.txt
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
*=========================================================================*/
#ifndef __itkRenyiEntropyThresholdCalculator_hxx
#define __itkRenyiEntropyThresholdCalculator_hxx
#include "itkRenyiEntropyThresholdCalculator.h"
#include "itkProgressReporter.h"
#include "vnl/vnl_math.h"
namespace itk
{
/*
* Compute the RenyiEntropy's threshold
*/
template<typename THistogram, typename TOutput>
void
RenyiEntropyThresholdCalculator<THistogram, TOutput>
::GenerateData(void)
{
const HistogramType * histogram = this->GetInput();
TotalAbsoluteFrequencyType total = histogram->GetTotalFrequency();
if( total == NumericTraits< TotalAbsoluteFrequencyType >::Zero )
{
itkExceptionMacro(<< "Histogram is empty");
}
m_Size = histogram->GetSize( 0 );
ProgressReporter progress( this, 0, m_Size );
if( m_Size == 1 )
{
this->GetOutput()->Set( static_cast<OutputType>(histogram->GetMeasurement( 0, 0 )) );
return;
}
const double tolerance = vnl_math::eps;
InstanceIdentifier ih;
std::vector<double> norm_histo(m_Size); /* normalized histogram */
std::vector<double> P1(m_Size); /* cumulative normalized histogram */
std::vector<double> P2(m_Size);
for(ih = 0; ih < m_Size; ih++ )
{
norm_histo[ih] = static_cast< double >( histogram->GetFrequency(ih, 0) ) / static_cast< double >( total );
}
P1[0]=norm_histo[0];
P2[0]=1.0-P1[0];
for(ih = 1; ih < m_Size; ih++ )
{
P1[ih]= P1[ih-1] + norm_histo[ih];
P2[ih]= 1.0 - P1[ih];
}
/* Determine the first non-zero bin */
m_FirstBin=0;
for(ih = 0; ih < m_Size; ih++ )
{
if( !( vcl_abs( P1[ih] ) < tolerance ) )
{
m_FirstBin = ih;
break;
}
}
/* Determine the last non-zero bin */
m_LastBin = static_cast< InstanceIdentifier >( m_Size - 1 );
for(ih = m_Size - 1; ih >= m_FirstBin; ih-- )
{
if( !( vcl_abs( P2[ih] ) < tolerance ) )
{
m_LastBin = ih;
break;
}
}
InstanceIdentifier t_star2 = this->MaxEntropyThresholding( histogram, norm_histo, P1, P2 );
InstanceIdentifier t_star1 = this->MaxEntropyThresholding2( histogram, norm_histo, P1, P2 );
InstanceIdentifier t_star3 = this->MaxEntropyThresholding3( histogram, norm_histo, P1, P2 );
InstanceIdentifier tmp_var;
/* Sort t_star values */
if( t_star2 < t_star1 )
{
tmp_var = t_star1;
t_star1 = t_star2;
t_star2 = tmp_var;
}
if( t_star3 < t_star2 )
{
tmp_var = t_star2;
t_star2 = t_star3;
t_star3 = tmp_var;
}
if( t_star2 < t_star1 )
{
tmp_var = t_star1;
t_star1 = t_star2;
t_star2 = tmp_var;
}
double beta1 = 0.;
double beta2 = 0.;
double beta3 = 0.;
// Adjust beta values
// note t_star1, t_star2, t_star3 are unsigned
if( vcl_abs( static_cast< double >( t_star1 ) - static_cast< double >( t_star2 ) ) <= 5. )
{
if( vcl_abs( static_cast< double >( t_star2 ) - static_cast< double >( t_star3 ) ) <= 5. )
{
beta1 = 1.;
beta2 = 2.;
beta3 = 1.;
}
else
{
beta1 = 0.;
beta2 = 1.;
beta3 = 3.;
}
}
else
{
if( vcl_abs( static_cast< double >( t_star2 ) - static_cast< double >( t_star3 ) ) <= 5. )
{
beta1 = 3.;
beta2 = 1.;
beta3 = 0.;
}
else
{
beta1 = 1.;
beta2 = 2.;
beta3 = 1.;
}
}
itkAssertInDebugAndIgnoreInReleaseMacro( t_star1 < m_Size );
itkAssertInDebugAndIgnoreInReleaseMacro( t_star2 < m_Size );
itkAssertInDebugAndIgnoreInReleaseMacro( t_star3 < m_Size );
double omega = P1[t_star3] - P1[t_star1];
// Determine the optimal threshold value
double realOptThreshold = static_cast< double >( t_star1 ) * ( P1[t_star1]+ 0.25 * omega * beta1 ) +
static_cast< double >( t_star2 ) * 0.25 * omega * beta2 +
static_cast< double >( t_star3 ) * ( P2[t_star3] + 0.25 * omega * beta3 );
InstanceIdentifier opt_threshold = static_cast< InstanceIdentifier >( realOptThreshold );
this->GetOutput()->Set( static_cast<OutputType>( histogram->GetMeasurement( opt_threshold, 0 ) ) );
}
template<typename THistogram, typename TOutput>
typename RenyiEntropyThresholdCalculator<THistogram, TOutput>::InstanceIdentifier
RenyiEntropyThresholdCalculator<THistogram, TOutput>
::MaxEntropyThresholding( const HistogramType* histogram,
const std::vector< double >& normHisto,
const std::vector< double >& P1,
const std::vector< double >& P2 )
{
/* Maximum Entropy Thresholding - BEGIN */
/* Calculate the total entropy each gray-level
and find the threshold that maximizes it
*/
InstanceIdentifier threshold = 0; // was MIN_INT in original code, but if an empty image is processed it gives an error later on.
double max_ent = NumericTraits< double >::min(); /* max entropy */
for( InstanceIdentifier it = m_FirstBin; it <= m_LastBin; it++ )
{
/* Entropy of the background pixels */
double ent_back = 0.0;
for( InstanceIdentifier ih = 0; ih <= it; ih++ )
{
if( histogram->GetFrequency(ih, 0) != NumericTraits< AbsoluteFrequencyType >::Zero )
{
double x = ( normHisto[ih] / P1[it] );
ent_back -= x * vcl_log ( x );
}
}
/* Entropy of the object pixels */
double ent_obj = 0.0;
for( InstanceIdentifier ih = it + 1; ih < m_Size; ih++ )
{
if( histogram->GetFrequency(ih, 0) != NumericTraits< AbsoluteFrequencyType >::Zero )
{
double x = ( normHisto[ih] / P2[it] );
ent_obj -= x * vcl_log( x );
}
}
/* Total entropy */
double tot_ent = ent_back + ent_obj;
// IJ.log(""+max_ent+" "+tot_ent);
if( max_ent < tot_ent )
{
max_ent = tot_ent;
threshold = it;
}
}
return threshold;
}
template<typename THistogram, typename TOutput>
typename RenyiEntropyThresholdCalculator<THistogram, TOutput>::InstanceIdentifier
RenyiEntropyThresholdCalculator<THistogram, TOutput>
::MaxEntropyThresholding2( const HistogramType* itkNotUsed( histogram ),
const std::vector< double >& normHisto,
const std::vector< double >& P1,
const std::vector< double >& P2 )
{
/* Maximum Entropy Thresholding - END */
InstanceIdentifier threshold = 0; //was MIN_INT in original code, but if an empty image is processed it gives an error later on.
double max_ent = NumericTraits< double >::min();
double alpha = 0.5; /* alpha parameter of the method */
double term = 1.0 / ( 1.0 - alpha );
for( InstanceIdentifier it = m_FirstBin; it <= m_LastBin; it++ )
{
/* Entropy of the background pixels */
double ent_back = 0.0;
for( InstanceIdentifier ih = 0; ih <= it; ih++ )
{
ent_back += vcl_sqrt( normHisto[ih] / P1[it] );
}
/* Entropy of the object pixels */
double ent_obj = 0.0;
for( InstanceIdentifier ih = it + 1; ih < m_Size; ih++ )
{
ent_obj += vcl_sqrt( normHisto[ih] / P2[it] );
}
/* Total entropy */
double product = ent_back * ent_obj;
double tot_ent = 0.;
if( product > 0.0 )
{
tot_ent = term * vcl_log( ent_back * ent_obj );
}
if( tot_ent > max_ent )
{
max_ent = tot_ent;
threshold = it;
}
}
return threshold;
}
template<typename THistogram, typename TOutput>
typename RenyiEntropyThresholdCalculator<THistogram, TOutput>::InstanceIdentifier
RenyiEntropyThresholdCalculator<THistogram, TOutput>
::MaxEntropyThresholding3( const HistogramType* itkNotUsed( histogram ),
const std::vector< double >& normHisto,
const std::vector< double >& P1,
const std::vector< double >& P2 )
{
InstanceIdentifier threshold = 0; //was MIN_INT in original code, but if an empty image is processed it gives an error later on.
double max_ent = 0.0;
double alpha = 2.0;
double term = 1.0 / ( 1.0 - alpha );
for( InstanceIdentifier it = m_FirstBin; it <= m_LastBin; it++ )
{
/* Entropy of the background pixels */
double ent_back = 0.0;
for( InstanceIdentifier ih = 0; ih <= it; ih++ )
{
double x = normHisto[ih] / P1[it];
ent_back += x * x;
}
/* Entropy of the object pixels */
double ent_obj = 0.0;
for( InstanceIdentifier ih = it + 1; ih < m_Size; ih++ )
{
double x = normHisto[ih] / P2[it];
ent_obj += x * x;
}
/* Total entropy */
double tot_ent = 0.0;
double product = ent_back * ent_obj;
if( product > 0.0 )
{
tot_ent = term * vcl_log( product );
}
if( tot_ent > max_ent )
{
max_ent = tot_ent;
threshold = it;
}
}
return threshold;
}
} // end namespace itk
#endif
|