/usr/include/ITK-4.5/itkSPSAOptimizer.h is in libinsighttoolkit4-dev 4.5.0-3.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 | /*=========================================================================
*
* Copyright Insight Software Consortium
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0.txt
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
*=========================================================================*/
#ifndef __itkSPSAOptimizer_h
#define __itkSPSAOptimizer_h
#include "itkSingleValuedNonLinearOptimizer.h"
#include "itkMersenneTwisterRandomVariateGenerator.h"
namespace itk
{
/**
* \class SPSAOptimizer
* \brief An optimizer based on simultaneous perturbation...
*
* This optimizer is an implementation of the Simultaneous
* Perturbation Stochastic Approximation method, described in:
*
* - http://www.jhuapl.edu/SPSA/
*
* - Spall, J.C. (1998), "An Overview of the Simultaneous
* Perturbation Method for Efficient Optimization," Johns
* Hopkins APL Technical Digest, vol. 19, pp. 482-492
*
* \ingroup Optimizers
* \ingroup ITKOptimizers
*/
class SPSAOptimizer:
public SingleValuedNonLinearOptimizer
{
public:
/** Standard class typedefs. */
typedef SPSAOptimizer Self;
typedef SingleValuedNonLinearOptimizer Superclass;
typedef SmartPointer< Self > Pointer;
typedef SmartPointer< const Self > ConstPointer;
/** Method for creation through the object factory. */
itkNewMacro(Self);
/** Run-time type information (and related methods). */
itkTypeMacro(SPSAOptimizer, SingleValuedNonLinearOptimizer);
/** Codes of stopping conditions */
typedef enum {
Unknown,
MaximumNumberOfIterations,
BelowTolerance,
MetricError
} StopConditionType;
/** Advance one step following the gradient direction. */
virtual void AdvanceOneStep(void);
/** Start optimization. */
void StartOptimization(void);
/** Resume previously stopped optimization with current parameters
* \sa StopOptimization. */
void ResumeOptimization(void);
/** Stop optimization.
* \sa ResumeOptimization */
void StopOptimization(void);
/** Get the cost function value at the current position. */
virtual MeasureType GetValue(void) const;
/** Get the cost function value at any position */
virtual MeasureType GetValue(const ParametersType & parameters) const;
/** Guess the parameters a and A. This function needs the
* number of GradientEstimates used for estimating a and A and
* and the expected initial step size (where step size is
* defined as the maximum of the absolute values of the
* parameter update). Make sure you set c, Alpha, Gamma,
* the MaximumNumberOfIterations, the Scales, and the
* the InitialPosition before calling this method.
*
* Described in:
* Spall, J.C. (1998), "Implementation of the Simultaneous Perturbation
* Algorithm for Stochastic Optimization", IEEE Trans. Aerosp. Electron.
* Syst. 34(3), 817-823.
*/
virtual void GuessParameters(
SizeValueType numberOfGradientEstimates,
double initialStepSize);
/** Get the current iteration number. */
itkGetConstMacro(CurrentIteration, SizeValueType);
/** Get Stop condition. */
itkGetConstMacro(StopCondition, StopConditionType);
/** Get the current LearningRate (a_k) */
itkGetConstMacro(LearningRate, double);
/** Get the GradientMagnitude of the latest computed gradient */
itkGetConstMacro(GradientMagnitude, double);
/** Get the latest computed gradient */
itkGetConstReferenceMacro(Gradient, DerivativeType);
/** Set/Get a. */
itkSetMacro(Sa, double);
itkGetConstMacro(Sa, double);
// For backward compatibility
void Seta(double a) { SetSa(a); }
double Geta() { return GetSa(); }
/** Set/Get c. */
itkSetMacro(Sc, double);
itkGetConstMacro(Sc, double);
// For backward compatibility
void Setc(double c) { SetSc(c); }
double Getc() { return GetSc(); }
/** Set/Get A. */
itkSetMacro(A, double);
itkGetConstMacro(A, double);
/** Set/Get alpha. */
itkSetMacro(Alpha, double);
itkGetConstMacro(Alpha, double);
/** Set/Get gamma. */
itkSetMacro(Gamma, double);
itkGetConstMacro(Gamma, double);
/** Methods to configure the cost function. */
itkGetConstMacro(Maximize, bool);
itkSetMacro(Maximize, bool);
itkBooleanMacro(Maximize);
bool GetMinimize() const
{ return !m_Maximize; }
void SetMinimize(bool v)
{ this->SetMaximize(!v); }
void MinimizeOn()
{ this->MaximizeOff(); }
void MinimizeOff()
{ this->MaximizeOn(); }
/** Set/Get the number of perturbation used to construct
* a gradient estimate g_k.
* q = NumberOfPerturbations
* g_k = 1/q sum_{j=1..q} g^(j)_k
*/
itkSetMacro(NumberOfPerturbations, SizeValueType);
itkGetConstMacro(NumberOfPerturbations, SizeValueType);
/**
* Get the state of convergence in the last iteration. When the
* StateOfConvergence is lower than the Tolerance, and the minimum
* number of iterations has been performed, the optimization
* stops.
*
* The state of convergence (SOC) is initialized with 0.0 and
* updated after each iteration as follows:
* SOC *= SOCDecayRate
* SOC += a_k * GradientMagnitude
*/
itkGetConstMacro(StateOfConvergence, double);
/** Set/Get StateOfConvergenceDecayRate (number between 0 and 1). */
itkSetMacro(StateOfConvergenceDecayRate, double);
itkGetConstMacro(StateOfConvergenceDecayRate, double);
/** Set/Get the minimum number of iterations */
itkSetMacro(MinimumNumberOfIterations, SizeValueType);
itkGetConstMacro(MinimumNumberOfIterations, SizeValueType);
/** Set/Get the maximum number of iterations. */
itkSetMacro(MaximumNumberOfIterations, SizeValueType);
itkGetConstMacro(MaximumNumberOfIterations, SizeValueType);
/** Set/Get Tolerance */
itkSetMacro(Tolerance, double);
itkGetConstMacro(Tolerance, double);
/** Get the reason for termination */
const std::string GetStopConditionDescription() const;
protected:
SPSAOptimizer();
virtual ~SPSAOptimizer() {}
/** PrintSelf method. */
void PrintSelf(std::ostream & os, Indent indent) const;
/** Variables updated during optimization */
DerivativeType m_Gradient;
double m_LearningRate;
DerivativeType m_Delta;
bool m_Stop;
StopConditionType m_StopCondition;
double m_StateOfConvergence;
SizeValueType m_CurrentIteration;
/** Random number generator */
Statistics::MersenneTwisterRandomVariateGenerator::Pointer m_Generator;
/** Method to compute the learning rate at iteration k (a_k). */
virtual double Compute_a(SizeValueType k) const;
/**
* Method to compute the gain factor for the perturbation
* at iteration k (c_k).
*/
virtual double Compute_c(SizeValueType k) const;
/** Method to generate a perturbation vector. Takes scales into account. */
virtual void GenerateDelta(const unsigned int spaceDimension);
/**
* Compute the gradient at a position. m_NumberOfPerturbations are used,
* and scales are taken into account.
*/
virtual void ComputeGradient(
const ParametersType & parameters,
DerivativeType & gradient);
private:
SPSAOptimizer(const Self &); // purposely not implemented
void operator=(const Self &); // purposely not implemented
/** Settings.*/
SizeValueType m_MinimumNumberOfIterations;
SizeValueType m_MaximumNumberOfIterations;
double m_StateOfConvergenceDecayRate;
double m_Tolerance;
bool m_Maximize;
double m_GradientMagnitude;
SizeValueType m_NumberOfPerturbations;
/** Parameters, as described by Spall.*/
double m_Sa;
double m_Sc;
double m_A;
double m_Alpha;
double m_Gamma;
}; // end class SPSAOptimizer
} // end namespace itk
#endif // end #ifndef __itkSPSAOptimizer_h
|