This file is indexed.

/usr/include/ITK-4.5/itkScaleTransform.h is in libinsighttoolkit4-dev 4.5.0-3.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
/*=========================================================================
 *
 *  Copyright Insight Software Consortium
 *
 *  Licensed under the Apache License, Version 2.0 (the "License");
 *  you may not use this file except in compliance with the License.
 *  You may obtain a copy of the License at
 *
 *         http://www.apache.org/licenses/LICENSE-2.0.txt
 *
 *  Unless required by applicable law or agreed to in writing, software
 *  distributed under the License is distributed on an "AS IS" BASIS,
 *  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 *  See the License for the specific language governing permissions and
 *  limitations under the License.
 *
 *=========================================================================*/
#ifndef __itkScaleTransform_h
#define __itkScaleTransform_h

#include <iostream>
#include "itkMatrixOffsetTransformBase.h"
#include "itkMacro.h"
#include "itkMatrix.h"

namespace itk
{
/** \class ScaleTransform
 * \brief Scale transformation of a vector space (e.g. space coordinates)
 *
 * The same functionality could be obtained by using the Affine transform,
 * but with a large difference in performace since the affine transform will
 * use a matrix multiplication using a diagonal matrix.
 *
 * \ingroup ITKTransform
 *
 * \wiki
 * \wikiexample{ImageProcessing/ScaleTransform,Scale an image}
 * \endwiki
 */
template <
  typename TScalar = float, // Type for cordinate representation type (float or
                             // double)
  unsigned int NDimensions = 3>
// Number of dimensions
// class ScaleTransform:public Transform< TScalar,
class ScaleTransform : public MatrixOffsetTransformBase< TScalar,
                                                         NDimensions,
                                                         NDimensions >
{
public:
  /** Standard class typedefs.   */
  typedef ScaleTransform                                                 Self;
  typedef MatrixOffsetTransformBase< TScalar, NDimensions, NDimensions > Superclass;
  typedef SmartPointer< Self >                                           Pointer;
  typedef SmartPointer< const Self >                                     ConstPointer;

  /** New macro for creation of through a smart pointer. */
  itkNewMacro(Self);

  /** Run-time type information (and related methods). */
  itkTypeMacro(ScaleTransform, Transform);

  /** Dimension of the domain space. */
  itkStaticConstMacro(SpaceDimension, unsigned int, NDimensions);
  itkStaticConstMacro(ParametersDimension, unsigned int, NDimensions);

  /** Scalar type. */
  typedef typename Superclass::ScalarType ScalarType;

  /** Parameters type. */
  typedef typename Superclass::ParametersType ParametersType;

  /** Jacobian type. */
  typedef typename Superclass::JacobianType JacobianType;

  /** Standard vector type for this class. */
  typedef FixedArray<TScalar, NDimensions> ScaleType;

  /** Standard vector type for this class. */
  typedef Vector<TScalar, NDimensions> InputVectorType;
  typedef Vector<TScalar, NDimensions> OutputVectorType;

  /** Standard covariant vector type for this class. */
  typedef CovariantVector<TScalar, NDimensions> InputCovariantVectorType;
  typedef CovariantVector<TScalar, NDimensions> OutputCovariantVectorType;

  /** Standard vnl_vector type for this class. */
  typedef vnl_vector_fixed<TScalar, NDimensions> InputVnlVectorType;
  typedef vnl_vector_fixed<TScalar, NDimensions> OutputVnlVectorType;

  /** Standard coordinate point type for this class. */
  typedef Point<TScalar, NDimensions> InputPointType;
  typedef Point<TScalar, NDimensions> OutputPointType;

  /** Base inverse transform type. This type should not be changed to the
   * concrete inverse transform type or inheritance would be lost.*/
  typedef typename Superclass::InverseTransformBaseType InverseTransformBaseType;
  typedef typename InverseTransformBaseType::Pointer    InverseTransformBasePointer;

  typedef typename Superclass::MatrixType MatrixType;

  /** Set parameters.  This method sets the parameters for the transform value
   *  specified by the user. The parameters are organized as scale[i] =
   *  parameter[i]. That means that in 3D the scale parameters for the coordinates
   *  {x,y,z} are {parameter[0], parameter[1], parameter[2]} respectively */
  void SetParameters(const ParametersType & parameters);

  /** Get the parameters that uniquely define the transform This is typically
   * used by optimizers during the process of image registration.  The parameters
   * are organized as {scale X, scale Y, scale Z } = { parameter[0],
   * parameter[1], parameter[2] } respectively */
  const ParametersType & GetParameters(void) const;

  /** Set the fixed parameters and update internal
   * transformation. This transform has no fixed paramaters
   */
  virtual void SetFixedParameters(const ParametersType &)
  {
  }

  /** Get the fixed parameters */
  virtual const ParametersType & GetFixedParameters(void) const;

  /** Get the Jacobian matrix. */
  virtual void ComputeJacobianWithRespectToParameters(const InputPointType & point, JacobianType & j) const;

  /** Get the jacobian with respect to position, which simply is the
   *  matrix because the transform is position-invariant.
   *  jac will be resized as needed, but it will be more efficient if
   *  it is already properly sized. */
  virtual void ComputeJacobianWithRespectToPosition(const InputPointType  & x, JacobianType & jac) const;

  /** Set the factors of an Scale Transform
   * This method sets the factors of an ScaleTransform to a
   * value specified by the user.
   * This method cannot be done with SetMacro because itk::Array has not an
   * operator== defined. The array of scales correspond in order to the factors
   * to be applied to each one of the coordinaates. For example, in 3D,
   * scale[0] corresponds to X, scale[1] corresponds to Y and scale[2]
   * corresponds to Z. */
  void SetScale(const ScaleType & scale)
  {
    m_Scale = scale; this->ComputeMatrix(); this->Modified();
  }

  virtual void ComputeMatrix(void);

  /** Compose with another ScaleTransform. */
  void Compose(const Self *other, bool pre = false);

  /** Compose this transform transformation with another scaling.
   * The pre argument is irrelevant here since scale transforms are commutative,
   * pre and postcomposition are therefore equivalent. */
  void Scale(const ScaleType & scale, bool pre = false);

  /** Transform by a scale transformation
   * This method applies the scale transform given by self to a
   * given point or vector, returning the transformed point or
   * vector. */
  OutputPointType     TransformPoint(const InputPointType  & point) const;

  using Superclass::TransformVector;
  OutputVectorType    TransformVector(const InputVectorType & vector) const;

  OutputVnlVectorType TransformVector(const InputVnlVectorType & vector) const;

  using Superclass::TransformCovariantVector;
  OutputCovariantVectorType TransformCovariantVector(const InputCovariantVectorType & vector) const;

  /** Back transform by a scale transformation
   * This method finds the point or vector that maps to a given
   * point or vector under the scale transformation defined by
   * self.  If no such point exists, an exception is thrown. */
  inline InputPointType     BackTransform(const OutputPointType  & point) const;

  inline InputVectorType    BackTransform(const OutputVectorType & vector) const;

  inline InputVnlVectorType BackTransform(const OutputVnlVectorType & vector) const;

  inline InputCovariantVectorType BackTransform(const OutputCovariantVectorType & vector) const;

  /** Find inverse of a scale transformation
   * This method creates and returns a new ScaleTransform object
   * which is the inverse of self.  If self is not invertible,
   * false is returned. */
  bool GetInverse(Self *inverse) const;

  /** Return an inverse of this transform. */
  virtual InverseTransformBasePointer GetInverseTransform() const;

  /** Set the transformation to an Identity
   *
   * This sets all the scales to 1.0 */
  void SetIdentity(void)
  {
    m_Scale.Fill(1.0);
  }

  /** Set/Get the center used as fixed point for the scaling */
  itkSetMacro(Center, InputPointType);
  itkGetConstReferenceMacro(Center, InputPointType);

  /** Get access to scale values */
  itkGetConstReferenceMacro(Scale, ScaleType);

  /** Indicates that this transform is linear. That is, given two
   * points P and Q, and scalar coefficients a and b, then
   *
   *           T( a*P + b*Q ) = a * T(P) + b * T(Q)
   */
  virtual bool IsLinear() const
  {
    return true;
  }

protected:
  /** Construct an ScaleTransform object. */
  ScaleTransform();

  /** Destroy an ScaleTransform object. */
  ~ScaleTransform();

  /** Print contents of an ScaleTransform */
  void PrintSelf(std::ostream & os, Indent indent) const;

private:
  ScaleTransform(const Self & other);   // purposely not implemented
  const Self & operator=(const Self &); // purposely not implemented

  ScaleType m_Scale;    // Scales of the transformation

  InputPointType         m_Center; // Scaling center
  mutable ParametersType m_FixedParameters;
};                         // class ScaleTransform

// Back transform a point
template <typename ScalarType, unsigned int NDimensions>
inline
typename ScaleTransform<ScalarType, NDimensions>::InputPointType
ScaleTransform<ScalarType, NDimensions>::BackTransform(const OutputPointType & point) const
{
  InputPointType result;

  for( unsigned int i = 0; i < SpaceDimension; i++ )
    {
    result[i] = ( point[i] + m_Center[i] ) / m_Scale[i] - m_Center[i];
    }
  return result;
}

// Back transform a vector
template <typename ScalarType, unsigned int NDimensions>
inline
typename ScaleTransform<ScalarType, NDimensions>::InputVectorType
ScaleTransform<ScalarType, NDimensions>::BackTransform(const OutputVectorType & vect) const
{
  InputVectorType result;

  for( unsigned int i = 0; i < SpaceDimension; i++ )
    {
    result[i] = vect[i] / m_Scale[i];
    }
  return result;
}

// Back transform a vnl_vector
template <typename ScalarType, unsigned int NDimensions>
inline
typename ScaleTransform<ScalarType, NDimensions>::InputVnlVectorType
ScaleTransform<ScalarType, NDimensions>::BackTransform(const OutputVnlVectorType & vect) const
{
  InputVnlVectorType result;

  for( unsigned int i = 0; i < SpaceDimension; i++ )
    {
    result[i] = vect[i] / m_Scale[i];
    }
  return result;
}

// Back Transform a CovariantVector
template <typename ScalarType, unsigned int NDimensions>
inline
typename ScaleTransform<ScalarType, NDimensions>::InputCovariantVectorType
ScaleTransform<ScalarType, NDimensions>::BackTransform(const OutputCovariantVectorType & vect) const
{
  // Covariant Vectors are scaled by the inverse
  InputCovariantVectorType result;

  for( unsigned int i = 0; i < SpaceDimension; i++ )
    {
    result[i] = vect[i] * m_Scale[i];
    }
  return result;
}

}  // namespace itk

#ifndef ITK_MANUAL_INSTANTIATION
#include "itkScaleTransform.hxx"
#endif

#endif /* __itkScaleTransform_h */