/usr/include/ITK-4.5/itkScaleTransform.h is in libinsighttoolkit4-dev 4.5.0-3.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 | /*=========================================================================
*
* Copyright Insight Software Consortium
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0.txt
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
*=========================================================================*/
#ifndef __itkScaleTransform_h
#define __itkScaleTransform_h
#include <iostream>
#include "itkMatrixOffsetTransformBase.h"
#include "itkMacro.h"
#include "itkMatrix.h"
namespace itk
{
/** \class ScaleTransform
* \brief Scale transformation of a vector space (e.g. space coordinates)
*
* The same functionality could be obtained by using the Affine transform,
* but with a large difference in performace since the affine transform will
* use a matrix multiplication using a diagonal matrix.
*
* \ingroup ITKTransform
*
* \wiki
* \wikiexample{ImageProcessing/ScaleTransform,Scale an image}
* \endwiki
*/
template <
typename TScalar = float, // Type for cordinate representation type (float or
// double)
unsigned int NDimensions = 3>
// Number of dimensions
// class ScaleTransform:public Transform< TScalar,
class ScaleTransform : public MatrixOffsetTransformBase< TScalar,
NDimensions,
NDimensions >
{
public:
/** Standard class typedefs. */
typedef ScaleTransform Self;
typedef MatrixOffsetTransformBase< TScalar, NDimensions, NDimensions > Superclass;
typedef SmartPointer< Self > Pointer;
typedef SmartPointer< const Self > ConstPointer;
/** New macro for creation of through a smart pointer. */
itkNewMacro(Self);
/** Run-time type information (and related methods). */
itkTypeMacro(ScaleTransform, Transform);
/** Dimension of the domain space. */
itkStaticConstMacro(SpaceDimension, unsigned int, NDimensions);
itkStaticConstMacro(ParametersDimension, unsigned int, NDimensions);
/** Scalar type. */
typedef typename Superclass::ScalarType ScalarType;
/** Parameters type. */
typedef typename Superclass::ParametersType ParametersType;
/** Jacobian type. */
typedef typename Superclass::JacobianType JacobianType;
/** Standard vector type for this class. */
typedef FixedArray<TScalar, NDimensions> ScaleType;
/** Standard vector type for this class. */
typedef Vector<TScalar, NDimensions> InputVectorType;
typedef Vector<TScalar, NDimensions> OutputVectorType;
/** Standard covariant vector type for this class. */
typedef CovariantVector<TScalar, NDimensions> InputCovariantVectorType;
typedef CovariantVector<TScalar, NDimensions> OutputCovariantVectorType;
/** Standard vnl_vector type for this class. */
typedef vnl_vector_fixed<TScalar, NDimensions> InputVnlVectorType;
typedef vnl_vector_fixed<TScalar, NDimensions> OutputVnlVectorType;
/** Standard coordinate point type for this class. */
typedef Point<TScalar, NDimensions> InputPointType;
typedef Point<TScalar, NDimensions> OutputPointType;
/** Base inverse transform type. This type should not be changed to the
* concrete inverse transform type or inheritance would be lost.*/
typedef typename Superclass::InverseTransformBaseType InverseTransformBaseType;
typedef typename InverseTransformBaseType::Pointer InverseTransformBasePointer;
typedef typename Superclass::MatrixType MatrixType;
/** Set parameters. This method sets the parameters for the transform value
* specified by the user. The parameters are organized as scale[i] =
* parameter[i]. That means that in 3D the scale parameters for the coordinates
* {x,y,z} are {parameter[0], parameter[1], parameter[2]} respectively */
void SetParameters(const ParametersType & parameters);
/** Get the parameters that uniquely define the transform This is typically
* used by optimizers during the process of image registration. The parameters
* are organized as {scale X, scale Y, scale Z } = { parameter[0],
* parameter[1], parameter[2] } respectively */
const ParametersType & GetParameters(void) const;
/** Set the fixed parameters and update internal
* transformation. This transform has no fixed paramaters
*/
virtual void SetFixedParameters(const ParametersType &)
{
}
/** Get the fixed parameters */
virtual const ParametersType & GetFixedParameters(void) const;
/** Get the Jacobian matrix. */
virtual void ComputeJacobianWithRespectToParameters(const InputPointType & point, JacobianType & j) const;
/** Get the jacobian with respect to position, which simply is the
* matrix because the transform is position-invariant.
* jac will be resized as needed, but it will be more efficient if
* it is already properly sized. */
virtual void ComputeJacobianWithRespectToPosition(const InputPointType & x, JacobianType & jac) const;
/** Set the factors of an Scale Transform
* This method sets the factors of an ScaleTransform to a
* value specified by the user.
* This method cannot be done with SetMacro because itk::Array has not an
* operator== defined. The array of scales correspond in order to the factors
* to be applied to each one of the coordinaates. For example, in 3D,
* scale[0] corresponds to X, scale[1] corresponds to Y and scale[2]
* corresponds to Z. */
void SetScale(const ScaleType & scale)
{
m_Scale = scale; this->ComputeMatrix(); this->Modified();
}
virtual void ComputeMatrix(void);
/** Compose with another ScaleTransform. */
void Compose(const Self *other, bool pre = false);
/** Compose this transform transformation with another scaling.
* The pre argument is irrelevant here since scale transforms are commutative,
* pre and postcomposition are therefore equivalent. */
void Scale(const ScaleType & scale, bool pre = false);
/** Transform by a scale transformation
* This method applies the scale transform given by self to a
* given point or vector, returning the transformed point or
* vector. */
OutputPointType TransformPoint(const InputPointType & point) const;
using Superclass::TransformVector;
OutputVectorType TransformVector(const InputVectorType & vector) const;
OutputVnlVectorType TransformVector(const InputVnlVectorType & vector) const;
using Superclass::TransformCovariantVector;
OutputCovariantVectorType TransformCovariantVector(const InputCovariantVectorType & vector) const;
/** Back transform by a scale transformation
* This method finds the point or vector that maps to a given
* point or vector under the scale transformation defined by
* self. If no such point exists, an exception is thrown. */
inline InputPointType BackTransform(const OutputPointType & point) const;
inline InputVectorType BackTransform(const OutputVectorType & vector) const;
inline InputVnlVectorType BackTransform(const OutputVnlVectorType & vector) const;
inline InputCovariantVectorType BackTransform(const OutputCovariantVectorType & vector) const;
/** Find inverse of a scale transformation
* This method creates and returns a new ScaleTransform object
* which is the inverse of self. If self is not invertible,
* false is returned. */
bool GetInverse(Self *inverse) const;
/** Return an inverse of this transform. */
virtual InverseTransformBasePointer GetInverseTransform() const;
/** Set the transformation to an Identity
*
* This sets all the scales to 1.0 */
void SetIdentity(void)
{
m_Scale.Fill(1.0);
}
/** Set/Get the center used as fixed point for the scaling */
itkSetMacro(Center, InputPointType);
itkGetConstReferenceMacro(Center, InputPointType);
/** Get access to scale values */
itkGetConstReferenceMacro(Scale, ScaleType);
/** Indicates that this transform is linear. That is, given two
* points P and Q, and scalar coefficients a and b, then
*
* T( a*P + b*Q ) = a * T(P) + b * T(Q)
*/
virtual bool IsLinear() const
{
return true;
}
protected:
/** Construct an ScaleTransform object. */
ScaleTransform();
/** Destroy an ScaleTransform object. */
~ScaleTransform();
/** Print contents of an ScaleTransform */
void PrintSelf(std::ostream & os, Indent indent) const;
private:
ScaleTransform(const Self & other); // purposely not implemented
const Self & operator=(const Self &); // purposely not implemented
ScaleType m_Scale; // Scales of the transformation
InputPointType m_Center; // Scaling center
mutable ParametersType m_FixedParameters;
}; // class ScaleTransform
// Back transform a point
template <typename ScalarType, unsigned int NDimensions>
inline
typename ScaleTransform<ScalarType, NDimensions>::InputPointType
ScaleTransform<ScalarType, NDimensions>::BackTransform(const OutputPointType & point) const
{
InputPointType result;
for( unsigned int i = 0; i < SpaceDimension; i++ )
{
result[i] = ( point[i] + m_Center[i] ) / m_Scale[i] - m_Center[i];
}
return result;
}
// Back transform a vector
template <typename ScalarType, unsigned int NDimensions>
inline
typename ScaleTransform<ScalarType, NDimensions>::InputVectorType
ScaleTransform<ScalarType, NDimensions>::BackTransform(const OutputVectorType & vect) const
{
InputVectorType result;
for( unsigned int i = 0; i < SpaceDimension; i++ )
{
result[i] = vect[i] / m_Scale[i];
}
return result;
}
// Back transform a vnl_vector
template <typename ScalarType, unsigned int NDimensions>
inline
typename ScaleTransform<ScalarType, NDimensions>::InputVnlVectorType
ScaleTransform<ScalarType, NDimensions>::BackTransform(const OutputVnlVectorType & vect) const
{
InputVnlVectorType result;
for( unsigned int i = 0; i < SpaceDimension; i++ )
{
result[i] = vect[i] / m_Scale[i];
}
return result;
}
// Back Transform a CovariantVector
template <typename ScalarType, unsigned int NDimensions>
inline
typename ScaleTransform<ScalarType, NDimensions>::InputCovariantVectorType
ScaleTransform<ScalarType, NDimensions>::BackTransform(const OutputCovariantVectorType & vect) const
{
// Covariant Vectors are scaled by the inverse
InputCovariantVectorType result;
for( unsigned int i = 0; i < SpaceDimension; i++ )
{
result[i] = vect[i] * m_Scale[i];
}
return result;
}
} // namespace itk
#ifndef ITK_MANUAL_INSTANTIATION
#include "itkScaleTransform.hxx"
#endif
#endif /* __itkScaleTransform_h */
|