This file is indexed.

/usr/include/ITK-4.5/itkShanbhagThresholdCalculator.hxx is in libinsighttoolkit4-dev 4.5.0-3.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
/*=========================================================================
 *
 *  Copyright Insight Software Consortium
 *
 *  Licensed under the Apache License, Version 2.0 (the "License");
 *  you may not use this file except in compliance with the License.
 *  You may obtain a copy of the License at
 *
 *         http://www.apache.org/licenses/LICENSE-2.0.txt
 *
 *  Unless required by applicable law or agreed to in writing, software
 *  distributed under the License is distributed on an "AS IS" BASIS,
 *  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 *  See the License for the specific language governing permissions and
 *  limitations under the License.
 *
 *=========================================================================*/

#ifndef __itkShanbhagThresholdCalculator_hxx
#define __itkShanbhagThresholdCalculator_hxx

#include "itkShanbhagThresholdCalculator.h"
#include "itkProgressReporter.h"
#include "vnl/vnl_math.h"

namespace itk
{
/*
 * Compute the Shanbhag's threshold
 */
template<typename THistogram, typename TOutput>
void
ShanbhagThresholdCalculator<THistogram, TOutput>
::GenerateData(void)
{
  const HistogramType * histogram = this->GetInput();
  // histogram->Print(std::cout);
  if ( histogram->GetTotalFrequency() == 0 )
    {
    itkExceptionMacro(<< "Histogram is empty");
    }
  ProgressReporter progress(this, 0, histogram->GetSize(0) );
  if( histogram->GetSize(0) == 1 )
    {
    this->GetOutput()->Set( static_cast<OutputType>( histogram->GetMeasurement(0,0) ) );
    }

  unsigned int size = histogram->GetSize(0);

  const double tolerance = 2.220446049250313E-16;
  int threshold;
  int ih, it;
  int first_bin;
  int last_bin;
  double term;
  double tot_ent;  /* total entropy */
  double min_ent;  /* max entropy */
  double ent_back; /* entropy of the background pixels at a given threshold */
  double ent_obj;  /* entropy of the object pixels at a given threshold */
  std::vector<double> norm_histo(size); /* normalized histogram */
  std::vector<double> P1(size); /* cumulative normalized histogram */
  std::vector<double> P2(size);

  int total = histogram->GetTotalFrequency();

  for (ih = 0; (unsigned)ih < size; ih++ )
    norm_histo[ih] = (double)histogram->GetFrequency(ih, 0)/total;

  P1[0]=norm_histo[0];
  P2[0]=1.0-P1[0];
  for (ih = 1; (unsigned)ih < size; ih++ )
    {
    P1[ih]= P1[ih-1] + norm_histo[ih];
    P2[ih]= 1.0 - P1[ih];
    }

  /* Determine the first non-zero bin */
  first_bin=0;
  for (ih = 0; (unsigned)ih < size; ih++ )
    {
    if ( !(vcl_abs(P1[ih])<tolerance))
      {
      first_bin = ih;
      break;
      }
    }

  /* Determine the last non-zero bin */
  last_bin=size - 1;
  for (ih = size - 1; ih >= first_bin; ih-- )
    {
    if ( !(vcl_abs(P2[ih])<tolerance))
      {
      last_bin = ih;
      break;
      }
    }

  // Calculate the total entropy each gray-level
  // and find the threshold that maximizes it
  threshold =-1;
  min_ent = itk::NumericTraits<double>::max();

  for ( it = first_bin; it <= last_bin; it++ )
    {
    /* Entropy of the background pixels */
    ent_back = 0.0;
    term = 0.5 / P1[it];
    for ( ih = 1; ih <= it; ih++ )
      { //0+1?
      ent_back -= norm_histo[ih] * vcl_log ( 1.0 - term * P1[ih - 1] );
      }
    ent_back *= term;

                        /* Entropy of the object pixels */
    ent_obj = 0.0;
    term = 0.5 / P2[it];
    for ( ih = it + 1; (unsigned)ih < size; ih++ )
      {
      ent_obj -= norm_histo[ih] * vcl_log ( 1.0 - term * P2[ih] );
      }
    ent_obj *= term;

    /* Total entropy */
    tot_ent = vcl_abs ( ent_back - ent_obj );

    if ( tot_ent < min_ent )
      {
      min_ent = tot_ent;
      threshold = it;
      }
    }

  this->GetOutput()->Set( static_cast<OutputType>( histogram->GetMeasurement( threshold, 0 ) ) );
}

} // end namespace itk

#endif